Preview

Personalized Psychiatry and Neurology

Advanced search

Pharmacogenetic Testing of Antipsychotic Transporter Proteins: A Case Report in a 32-Year-Old Woman with Treatment-Resistant Schizophrenia

https://doi.org/10.52667/2712-9179-2022-2-1-98-106

Abstract

Schizophrenia is a common and socially significant mental disorder requiring long-term use of antipsychotics (APs). Long-term use of APs increases the risk of developing adverse drug reactions (ADRs) and / or treatment resistance in some patients. This may be due to a genetically determined impairment of APs transport across the blood-brain barrier (BBB) and the membrane of APs target neurons in the brain. Pharmacogenetic testing (PGx) is a method to identify a group of patients with a high risk of developing AP-induced ADRs. Foreign panels for PGx do not include non-functional variants of genes encoding APs transporter proteins. However, our experience ofusing PGx to search for low-functional and non-functional single-nucleotide variants (SNVs)/polymorphisms of three genes (ABCB1, ABCG2, ABCC1) encoding APs transporter proteins demonstrates the importance of this new personalized approach to the choice of APs and its dosing in patients with a slow transporter PGx profile. The main purpose of the work is to present the experience of using pharmaco-genetic testing (PGx) in a 32-year-old patient with treatment-resistant schizophrenia and a medical history of AP-induced ADRs.

About the Authors

S M. Osipova
V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology; Institute of Personalized Psychiatry and Neurology
Russian Federation

Sofia M. Osipova

192019, Saint-Petersburg; Tel.: +7 (812) 670-02-20 add. 7814 



N. A. Shnayder
V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology; Institute of Personalized Psychiatry and Neurology; Centre of Collective Usage Molecular and Cell Technologies, V. F. Voino-Yasenetsky Krasnoyarsk State Medical University
Russian Federation

Natalia A. Shnayder

192019, Saint-Petersburg; 660022, Krasnoyarsk; Tel.: +7 (812) 670-02-20 add. 7814



References

1. Katona, L.; Bitter, I.; Czobor, P. A meta-analysis of effectiveness of real-world studies of antipsychotics in schizophrenia: Are the results consistent with the findings of randomized controlled trials? Transl Psychiatry 2021, 11, 510. https://doi.org/10.1038/s41398-021-01636-9

2. Kaar, S. J.; Natesan, S.; McCutcheon, R.; Howes, J. D. Antipsychotics: Mechanisms underlying clinical response and side-effects and novel treatment approaches based on pathophysiology. Neuropharmacology 2020, 172. https://doi.org/10.1016/j.neuropharm.2019.107704

3. Nasyrova, R.F.; Neznanov, N.G. Clinical psychopharmacogenetics Spb: Publishing office DEAN, 2019, 405 p. ISBN 978-5-6043573-7-8

4. Thomas, С.; Tampé, R. Structural and mechanistic principles of ABC transporters. Annual Review of Biochemistry 2020, 89, 605-636. https://doi.org/10.1146/annurev-biochem-011520-105201

5. Bruckmueller, H.; Cascorbi, I. ABCB1, ABCG2, ABCC1, ABCC2, and ABCC3 drug transporter polymorphisms and their impact on drug bioavailability: what is our current understanding? Expert Opinion on Drug Metabolism & Toxicology 2021, 17:4, 369-396. https://doi.org/10.1080/17425255.2021.1876661

6. Szakács G.; Homolya L.; Sarkadi B.; Váradi A. MDR‐ABC Transporters. In: Offermanns S., Rosenthal W. (eds) Encyclopedia of Molecular Pharmacology 2008 Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38918-7_241

7. Alemayehu, D.; Melisie, G.; Taye K.; Tadesse E. The role of ABC efflux transporter in treatment of pharmaco-resistant schizophrenia: A review article. Clin Pharmacol Biopharm 2019, 8: 189. https://doi.org/10.4172/2167-065X.1000189

8. Carvalho, H. B.; Yang, E. H.; Lapetina, D.; Carr, M. S.; Yavorskyy, V.; Hague, J.; Aitchison, K. J.; How can drug metabolism and transporter genetics inform psychotropic prescribing? Frontiers in Genetics 2020, 11. https://doi.org/10.3389/fgene.2020.491895

9. Wang, J.S.; Zhu, H.J.; Markowitz, J.S.; Donovan, J.L.; Yuan, H.J.; Devane, C.L. Antipsychotic drugs inhibit the function of breast cancer resistance protein. Basic Clin Pharmacol Toxicol 2008, 103(4): 336-341. https://doi.org/10.1111/j.1742-7843.2008.00298.x

10. Piatkov, I.; Caetano, D.; Assur, Y. et al. ABCB1 and ABCC1 single-nucleotide polymorphisms in patients treated with clozapine. Pharmgenomics Pers Med 2017, 10: 235-242. https://doi.org/10.2147/PGPM.S142314

11. GeneSight Tests: Psychotropic and MTHFR www.genesight.com https://genesight.com/product/ (March 29, 2022)

12. Genecept Assay www.ncbi.nlm.nih.gov https://www.ncbi.nlm.nih.gov/gtr/tests/523653.4/ (March 29, 2022)

13. The Humen Protein Atlas www.proteinatlas.org https://www.proteinatlas.org/ENSG00000085563-ABCB1/brain (October 14, 2021)

14. Neznanov N.G. A paradigm shift to treat psychoneurological disorders. Personalized Psychiatry and Neurology 2021; 1(1):1-2.

15. Nasyrova, R.F.; Schnaider, N.A.; Mironov, K.O.; Shipulin, G.A.; Dribnokhodova, O.P.; Golosov, E.A.; Tolmachev, M.Yu.; Andreev, B.V.; Kurylev, A.A.; Akhmetova, L.S.; Limankin, О.V.; Neznanov, N.G. Pharmacogenetics of schizophrenia in real clinical practice: a clinical case. Neurology, Neuropsychiatry, Psychosomatics 2018, 10(4):88-93. https://doi.org/10.14412/2074-2711-2018-4-88-93/


Review

For citations:


Osipova S.M., Shnayder N.A. Pharmacogenetic Testing of Antipsychotic Transporter Proteins: A Case Report in a 32-Year-Old Woman with Treatment-Resistant Schizophrenia. Personalized Psychiatry and Neurology. 2022;2(1):98-106. https://doi.org/10.52667/2712-9179-2022-2-1-98-106

Views: 626


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2712-9179 (Online)