Preview

Personalized Psychiatry and Neurology

Advanced search

Interindividual Variability of Anticonvulsant-Induced QT Prolongation Risk

https://doi.org/10.52667/2712-9179-2022-2-1-23-45

Abstract

In connection with the widespread use of anticonvulsants (antiepileptic drugs – AEDs) in psychiatric and neurological practice and the need for their long-term use to treat a wide range of mental disorders and neurological diseases, the question of their safety profile, including the assessment of the risk of developing life-threatening conditions and adverse reactions (ADRs), becomes relevant. In this regard, from the position of personalized medicine, it is critical to develop an interdisciplinary approach with the participation of doctors of various specialties and a new strategy of a personalized approach to predicting AED-induced prolongation of the QT interval as one of the most prognostically unfavorable cardiological ADRs (including sudden death syndrome – SDS). We searched for full-text publications for the period from 2011 to 2021 databases using the following keywords and its combination. We have found and systematized monogenic and multifactorial forms of long QT syndrome (LQTS) and candidate genes that slow down AEDs metabolism in the liver. Identification of risk alleles of single nucleotide variants (SNVs) of the candidate genes predisposing to the development of AED-induced LQTS and SDS will make it possible to adjust the choice and dosage of these drugs and prevent the development of ADRs, which will improve the quality of life of patients and prevent SDS in the patients with psychiatric and neurological disorders.

About the Authors

N. M. Zhuravlev
Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology
Russian Federation

Nikita M. Zhuravlev

Saint-Petersburg, 192019



N. A. Shnayder
Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology; Shared Core Facilities Molecular and Cell Technologies, Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University
Russian Federation

Natalia A. Shnayder

Saint-Petersburg, 192019; Krasnoyarsk, 660022; Tel.: +7(812)670-02-20



E. E. Vaiman
Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology
Russian Federation

Elena E. Vaiman

Saint-Petersburg, 192019



A. K. Abdyrakhmanova
Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology
Russian Federation

Aiperi K. Abdyrakhmanova

Saint-Petersburg, 192019



M. M. Petrova
Shared Core Facilities Molecular and Cell Technologies, Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University
Russian Federation

Marina M. Petrova

Krasnoyarsk, 660022



E. N. Bochanova
Shared Core Facilities Molecular and Cell Technologies, Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University
Russian Federation

Elena N. Bochanova

Krasnoyarsk, 660022



I. V. Romanova
Shared Core Facilities Molecular and Cell Technologies, Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University
Russian Federation

Irina V. Romanova

Krasnoyarsk, 660022



O. A. Gavrilyuk
Shared Core Facilities Molecular and Cell Technologies, Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University
Russian Federation

Oksana A. Gavrilyuk

Krasnoyarsk, 660022



N. V. Lareva
Chita State Medical Academy
Russian Federation

Natalia V. Lareva - Department of Therapy, Faculty of Continuing Education

Chita, 672000



R. F. Nasyrova
Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology; International Centre for Education and Research in Neuropsychiatry, Samara State Medical University
Russian Federation

Regina F. Nasyrova

Saint-Petersburg, 192019; Samara, 443099; Tel.: +7(812)670-02-20



References

1. Karlov V.A. Epilepsy in children and male and female adults, 2rd ed. BINOM-Press: Moscow, Russia, 2019. pp.718-722.

2. Shnayder, N.A.; Petrova, M.M.; Petrov, K.V.; Nasyrova, R.F. Pharmacological predictors of cardiac arrhythmias and conduction disorders in juvenile myoclonic epilepsy. Epilepsy and Paroxysmal Conditions. 2021, 13 (2), 168-179. doi: 10.17749/2077-8333/epi.par.con.2021.051.

3. Borodulina, I.V.; Rachin, A.P. Polyneuropathies in the practice of a doctor: features of pathogenesis, clinical course and modern approaches to the treatment of painful and painless forms. Breast Cancer. 2016, 25, 1705-1710.

4. Auerbach, D.S.; Biton, Y.; Polonsky, B.; McNitt, S.; Gross, R.A.; Dirksen, R.T.; Moss, A.J. Risk of cardiac events in long QT syndrome patients when taking antiseizure medications. Transl Res. 2018, 191, 81-92.e7. doi: 10.1016/j.trsl.2017.10.002.

5. Talaei,A.; Farıdhosseini, F.; Kazemi, H.; Fayyazi Bordbar, M.R.; Rezaei Ardani, A. Effect of topiramate on drug associated weight gain of patients with schizophrenia and bipolar i disorders: A dose ranging randomized trial. Turk Psikiyatri Derg., 2016, 27 (2), 0. PMID: 27370059.

6. Demyanov, I.A.; Surikova, V.V.; Melnik, E.Yu. Modern use of anticonvulsants in psychiatric practice. Bulletin of St. Petersburg State University. The Medicine. 2017, 12 (3), 235-242. doi: 10.21638/11701/spbu11.2017.303.

7. Brunetti, P.; Giorgetti, R.; Tagliabracci, A.; Huestis, M.A.; Busardò, F.P. Designer benzodiazepines: A review of toxicology and public health risks. Pharmaceuticals. 2021, 14(6), 560. doi 10.3390/ph14060560.

8. Federal Law No. 61-FZ "On the Circulation of Medicines" dated 12.04.2010 (as amended on 11.06.2021)

9. Order of Roszdravnadzor No. 1071 "On approval of the Procedure for the implementation of pharmacovigilance" dated 15.02.2017 (as amended on 16.07.2020)

10. Bochanova, E.N.; Shnayder, N.A.; Dmitrenko, D.V.; Shapovalova, E.A.; Veselova, O.F.; Shilkina, O.S.; Potupchik, T.V. Experience in registering undesirable side reactions to antiepileptic drugs in the clinic of the Krasnoyarsk Medical University. Physician, 2016, 4, 6-8.

11. Order of the Ministry of Health of Russia No. 42 "On approval of the departmental target program" Development of fundamental, translational and personalized medicine" dated 01.02.2019 (as amended on 24.08.2020).

12. Salmina, A.B.; Shnayder, N.A.; Mikhutkina, S.V. Modern concepts of ion channels and canalopathies (literature review). Siberian Medical Review, 2005, 34 (1), 75-78.

13. Latshang, T.D.; Kaufmann, B.; Nussbaumer-Ochsner, Y.; Ulrich, S.; Furian, M.; Kohler, M.; Thurnheer, R.; Saguner, A.M.; Duru, F.; Bloch, K.E. Patients with obstructive sleep apnea have cardiac repolarization disturbances when travelling to altitude: randomized, placebo-controlled trial of acetazolamide. Sleep. 2016, 39(9), 1631-1637. doi: 10.5665/sleep.6080.

14. Žakelj, N.; Osredkar, D.; Šuštar, N. Mind the gap: acetazolamide prolonged periods without paralysis in a girl with andersentawil syndrome. Case Rep Neurol, 2021, 13, 515-520. doi: 10.1159/000517899.

15. Bresnahan, R.; Panebianco, M., Marson, A.G. Brivaracetam add-on therapy for drug-resistant epilepsy. Cochrane Database of Systematic Reviews. 2019, 3(3). doi: 10.1002/14651858.CD011501.pub2.

16. Maschio, M.; Maialetti, A.; Mocellini, C.; Domina, E.; Pauletto, G.; Costa, C.; Mascia, A.; Romoli, M.; Giannarelli, D. Effect of brivaracetam on efficacy and tolerability in patients with brain tumor-related epilepsy: A retrospective multicenter study. Frontiers in Neurology, 2020, 11, 813. doi: 10.3389/fneur.2020.00813.

17. Mufazalova, N.A.; Valeeva, L.A.; Mufazalova, L.F.; Batrakova, K.V. Antiepileptic drugs: textbook. Bashkir State Medical University: Ufa, Russia. 2021. pp. 74-76.

18. Nevitt, S.J.; Marson, A.G.; Tudur Smith, C. Carbamazepine versus phenobarbitone monotherapy for epilepsy: an individual participant data review. Cochrane Database of Systematic Reviews, 2018, 10, CD001904. doi: 10.1002/14651858.CD001904.pub4.

19. Nevitt, S.J.; Marson, A.G.; Tudur Smith, C. Carbamazepine versus phenytoin monotherapy for epilepsy: an individual participant data review. Cochrane Database of Systematic Reviews, 2019, 7, CD001911. doi: 10.1002/14651858.CD001911.pub4.

20. Song, L.; Liu, F.; Liu, Y.; Zhang, R.; Ji, H.; Jia, Y. Clonazepam add-on therapy for drug-resistant epilepsy. Cochrane Database Syst Rev. 2020, 4(4), CD012253. doi: 10.1002/14651858.CD012253.pub3.

21. Dhaliwal, J.S.; Rosani, A.; Saadabadi, A. Diazepam. 2021 Sep 14. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021. PMID: 30725707.

22. Chang, X.C.; Yuan, H.; Wang, Y.; Xu, H.Q.; Hong, W.K.; Zheng, R.Y. Eslicarbazepine acetate add-on therapy for drug-resistant focal epilepsy. Cochrane Database Syst Rev. 2021, 6(6), CD008907. doi:10.1002/14651858.cd008907.pub4.

23. Zhidkova, I.A.; Karlov, V.A.; Vlasov, P.N. New possibilities of pharmacotherapy of epilepsy: eslicarbazepine acetate in treatment of focal epilepsy. Journal of Neurology and Psychiatry named after S.S. Korsakov. 2018, 118(4), 140-145. doi: 10.17116/jnevro201811841140-145.

24. Brigo, F.; Igwe, S.C.; Lattanzi, S. Ethosuximide, sodium valproate or lamotrigine for absence seizures in children and adolescents. Cochrane Database Syst Rev. 2021, 1(1), CD003032. doi: 10.1002/14651858.cd003032.pub5.

25. Shi, L.L.; Bresnahan, R.; Martin-McGill, K.J.; Dong, J.; Ni, H.; Geng, J. Felbamate add-on therapy for drug-resistant focal epilepsy. Cochrane Database of Systematic Reviews 2019, 8, CD008295. doi: 10.1002/14651858.CD008295.pub5.

26. Gou, X.; Yu, X.; Bai, D.; Tan, B.; Cao, P.; Qian, M.; Zheng, X.; Chen, L.; Shi, Z.; Li, Y.; Ye, F.; Liang, Y.; Ni, J. Pharmacology and mechanism of action of HSK16149, a selective ligand of α2δ Subunit of voltage-gated calcium channel with analgesic activity in animal models of chronic pain. J Pharmacol Exp Ther. 2021, 376(3), 330-337. doi: 10.1124/jpet.120.000315.

27. Babar, R. K.; Bresnahan, R.; Gillespie, C. S.; Michael, B. D. Lacosamide add-on therapy for focal epilepsy. Cochrane Database of Systematic Reviews, 2021, 5, CD008841. doi:10.1002/14651858.cd008841.pub3.

28. Yasam, V.R.; Jakki, S.L.; Senthil, V.; Eswaramoorthy, M.; Shanmuganathan, S.; Arjunan, K.; Nanjan, M.J. A pharmacological overview of lamotrigine for the treatment of epilepsy. Exp Rev Clin Pharmacol. 2016, 9(12), 1533–1546. doi: 10.1080/17512433.2016.1254041.

29. Altun, Y.; Yasar, E. Effects of valproate, carbamazepine and levetiracetam on Tp-e interval, Tp-e/QT and Tp-e/QTc ratio. Ideggyogy Sz. 2020, 73 (3–4), 121–127. doi:10.18071/isz.73.0121.

30. Page, C.B.; Mostafa, A.; Saiao, A.; Grice, J.E.; Roberts, M.S.; Isbister, G.K. Cardiovascular toxicity with levetiracetam overdose. Clin Toxicol (Phila). 2016, 54(2), 152–154. doi: 10.3109/15563650.2015.1115054.

31. Aronow, W.S.; Shamliyan, T.A. Effects of atypical antipsychotics on QT interval in patients with mental disorders. Ann Transl Med, 2018, 6(8), 147. doi: 10.21037/atm.2018.03.17.

32. Meehan, K.; Zhang, F.; David, S.; Tohen, M.; Janicak, P.; Small, J.; Koch, M.; Rizk, R.; Walker, D.; Tran, P.; Breier, A. A doubleblind, randomized comparison of the efficacy and safety of intramuscular injections of olanzapine, lorazepam, or placebo in treating acutely agitated patients diagnosed with bipolar mania. J Clin Psychopharmacol. 2001, 21(4), 389-397. doi:10.1097/00004714-200108000-00006.

33. Avcı, O.; Gürsoy, S.; Kaygusuz, K.; Özdemir Kol, İ.; Düğer, C.; İsbir, A.C.; Mimaroğlu, M.C. The effects of sedative agents used in intensive care unit on QT interval. Cumhuriyet Medical Journal, 2017, 39(1), 417-429. doi: 10.7197/cmj.v39i1.5000208784.

34. Bresnahan, R.; Atim-Oluk, M.; Marson, A.G. Oxcarbazepine add-on for drug-resistant focal epilepsy. Cochrane Database of Systematic Reviews, 2020, 3, CD012433. doi: 10.1002/14651858.CD012433.pub2.

35. Potschka, H.; Trinka, E. Perampanel: Does it have broad-spectrum potential? Epilepsia. 2019, 60(1), 22-36. doi: 10.1111/epi.14456.

36. Fattorusso, A.; Matricardi, S.; Mencaroni, E.; Dell'Isola, G.B.; Di Cara, G.; Striano, P.; Verrotti, A. The pharmacoresistant epilepsy: An overview on existant and new emerging therapies. Front. Neurol. 2021,12, 674483. doi: 10.3389/fneur.2021.674483.

37. Kundu, Bijoy. Chapter 8: Anticonvulsants. An introduction to neurochemistry: Application to CNS disorders. Lucknow, India. 2021. p.413. (https://www.researchgate.net/publication/353793785_Syllabus_based_book_on_CNS_disorders).

38. Pizova, N.V.; Pizov, A.V. Certain risk factors for the development of cognitive impairment in persons with epilepsy and new therapeutic options. Medical Council. 2021, 10, 86-93. doi: 10.21518/2079-701X-2021-10-86-93.

39. Kang, H.; Lan, L.; Jia, Y.; Li, C.; Fang, Y.; Zhu, S.; Kirsch, H. Long QT syndrome with potassium voltage-gated channel subfamily H member 2 gene mutation mimicking refractory epilepsy: case report. BMC Neurol. 2021, 21(1), 338. doi: 10.1186/s12883-021-02365-8.

40. Morrison, E.E.; Sandilands, E.A.; Webb, D.J. Gabapentin and pregabalin: do the benefits outweigh the harms? J R Coll Physicians Edinb. 2017, 47(4), 310-313. doi: 10.4997/JRCPE.2017.402.

41. Lenkapothula, N.; Cascella, M. Primidone. 2021 Jul 29. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan–. PMID: 32965968.

42. Panebianco, M.; Prabhakar, H.; Marson, A.G. Rufinamide add-on therapy for drug-resistant epilepsy. Cochrane Database Syst Rev. 2020, 11(11), CD011772. doi: 10.1002/14651858.CD011772.pub3.

43. Singhi, S.; Gupta, A. A review of the selected and newer antiseizure medications used in childhood epilepsies. Indian J Pediatr. 2021, 88(10), 993-999. doi:10.1007/s12098-021-03857-8.

44. Bresnahan, R.; Martin-McGill, K.J.; Milburn-McNulty, P.; Powell, G.; Sills, G.J.; Marson, A.G. Sulthiame add-on therapy for epilepsy. Cochrane Database Syst Rev. 2019, 8(8), CD009472. doi: 10.1002/14651858.CD009472.pub4.

45. E. Eleraky, N.; M. Omar, M.; A. Mahmoud, H.; A. Abou-Taleb, H. Nanostructured lipid carriers to mediate brain delivery of temazepam: design and in vivo study. Pharmaceutics. 2020, 12(5), 451. doi:10.3390/pharmaceutics12050451.

46. Bresnahan, R.; Martin-McGill, K.J.; Hutton, J.L.; Marson, A.G. Tiagabine add-on therapy for drug-resistant focal epilepsy. Cochrane Database Syst Rev. 2019, 10(10), CD001908. doi:10.1002/14651858.cd001908.pub4.

47. Yousaf, A. A rare cause of iatrogenic sinus bradycardia. J Case Rep. 2016; 6: 90–3. doi: 10.17659/01.2016.0022.

48. Bourin, M. Mechanism of action of valproic acid and its derivatives. SOJ Pharm Sci. 2020, 7(1), 1–4. doi: 10.15226/2374-6866/7/1/001994.

49. Asoğlu, R.; Özdemir, M.; Aladağ, N.; Asoğlu, E. Evaluation of cardiac repolarization indices in epilepsy patients treated with carbamazepine and valproic acid. Medicina (Kaunas). 2020, 56 (1), 20. doi: 10.3390/medicina56010020.

50. Grigoryeva, A.V.; Dorofeeva, M.Yu.; Gorchkhanova, Z.K.; Perminov, V.S.; Belousova, E.D. Preventive antiepileptic therapy in patients with tuberous sclerosis. Russian Journal of Child Neurology. 2017, 12(2), 34-39. doi: 10.17650/2073-8803-2017-12-2-34-39.

51. Galtrey, C.M.; Levee, V.; Arevalo, J.; Wren, D. Long QT syndrome masquerading as epilepsy. Pract Neurol. 2019, 19 (1), 56–61. doi: 10.1136/practneurol-2018-001959.

52. Catterall, W.A. Molecular properties of brain sodium channels: an important target for an-ticonvulsant drugs. Adv Neurol. 1999, 79, 441-456. PMID: 10514834.

53. Eijkelkamp, N.; Linley, J.E.; Baker, M.D.; Minett, M.S.; Cregg, R.; Werdehausen, R.; Rugiero, F.; Wood, J.N. Neurological perspectives on voltage-gated sodium channels. Brain. 2012, 135(9), 2585-2612. doi: 10.1093/brain/aws225.

54. Meisler, M.H.; Kearney, J.A. Sodium channel mutations in epilepsy and other neurological disorders. J Clin Invest. 2005, 115, 2010–2017. doi: 10.1172/JCI25466

55. Catterall, W.A. Sodium channels, inherited epilepsy, and antiepileptic drugs. Annu Rev Pharmacol Toxicol. 2014, 54, 317-338. doi: 10.1146/annurev-pharmtox-011112-140232.

56. Ravindran, K.; Powell, K.L.; Todaro, M.; O'Brien, T.J. The pathophysiology of cardiac dysfunction in epilepsy. Epilepsy Res. 2016, 127, 19-29. doi: 10.1016/j.eplepsyres.2016.08.007.

57. Rüdiger, K.; Jakob. W. Potassium Channels in Epilepsy. Cold Spring Harbor Perspectives in Medicine. 2016, 6(5), a022871–. doi: 10.1101/cshperspect.a022871.

58. Doyle, D.A.; Morais Cabral, J.; Pfuetzner, R.A.; Kuo, A.; Gulbis, J.M.; Cohen, S.L.; Chait, B.T.; MacKinnon, R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998, 280(5360), 69-77. doi: 10.1126/science.280.5360.69.

59. Rajakulendran, S.; Hanna, M.G. The Role of Calcium Channels in Epilepsy. Cold Spring Harbor Perspectives in Medicine. 2016, 6(1), a022723–. doi:10.1101/cshperspect.a022723.

60. Li, M.C.H.; O'Brien, T.J.; Todaro, M.; Powell, K.L. Acquired cardiac channelopathies in epilepsy: Evidence, mechanisms, and clinical significance. Epilepsia. 2019, 60(9), 1753-1767. doi: 10.1111/epi.16301.

61. Neira, V.; Enriquez, A.; Simpson, C.; Baranchuk, A. Update on long QT syndrome. J Cardiovasc Electrophysiol. 2019, 30(12), 3068-3078. doi: 10.1111/jce.14227. Epub 2019 Oct 14.

62. Nakano, Y.; Shimizu, W. Genetics of long-QT syndrome. J Hum Genet. 2016, 61(1), 51-55. doi: 10.1038/jhg.2015.74.

63. Alders, M.; Bikker, H.; Christiaans, I. Long QT syndrome. 2003 Feb 20 [updated 2018 Feb 8]. In: Adam, M.P.; Ardinger, H.H.; Pagon, R.A.; Wallace, S.E.; Bean, L.J.H.; Mirzaa, G.; Amemiya, A.; editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2021. PMID: 20301308.

64. Goldenberg, I.; Zareba, W.; Moss, A.J. Long QT syndrome. Curr Probl Cardiol. 2008, 33(11), 629-694. doi: 10.1016/j.cpcardiol.2008.07.002.

65. Schwartz, P.J.; Crotti, L.; Insolia, R. Long-QT syndrome: from genetics to management. Circ Arrhythm Electrophysiol. 2012, 5(4), 868-877. doi: 10.1161/CIRCEP.111.962019.

66. Zareba, W.; Moss, A.J.; Schwartz, P.J.; Vincent, G.M.; Robinson, J.L.; Priori, S.G.; Benhorin, J.; Locati, E.H.; Towbin, J.A.; Keating, M.T.; Lehmann, M.H.; Hall, W.J. Influence of the genotype on the clinical course of the long-QT syndrome. International LongQT Syndrome Registry Research Group. N Engl J Med. 1998, 339(14), 960-965. doi: 10.1056/NEJM199810013391404.

67. Nannenberg, E.A.; Sijbrands, E.J.; Dijksman, L.M.; Alders, M.; van Tintelen, J.P.; Birnie, M.; van Langen, I.M.; Wilde, A.A. Mortality of inherited arrhythmia syndromes: insight into their natural history. Circ Cardiovasc Genet. 2012, 5(2), 183-9. doi: 10.1161/CIRCGENETICS.111.961102.

68. Goldenberg, I.; Horr, S.; Moss, A.J.; Lopes, C.M.; Barsheshet, A.; McNitt, S.; Zareba, W.; Andrews, M.L.; Robinson, J.L.; Locati, E.H.; Ackerman, M.J.; Benhorin, J.; Kaufman, E.S.; Napolitano, C.; Platonov, P.G.; Priori, S.G.; Qi, M.; Schwartz, P.J.; Shimizu, W.; Towbin, J.A.; Vincent, G.M.; Wilde, A.A.; Zhang, L. Risk for life-threatening cardiac events in patients with genotype-confirmed long-QT syndrome and normal-range corrected QT intervals. J Am Coll Cardiol. 2011, 57(1), 51-59. doi: 10.1016/j.jacc.2010.07.038.

69. Lankaputhra, M.; Voskoboinik, A. Congenital long QT syndrome: a clinician's guide. Intern Med J. 2021, 51(12), 1999-2011. doi:10.1111/imj.15437.

70. Committee For Proprietary Medicinal Products (CPMP) Points to consider: The assessment of the potential for QT interval prolongation by non-cardiovascular medicinal products. London: 1997 Dec.

71. Jervell, A.; Lange-Nielsen, F. Congenital deaf-mutism, functional heart disease with prolongation of the QT interval and sudden death. Am Heart J. 1957, 54(1), 59-68. doi: 10.1016/0002-8703(57)90079-0.

72. Horner, J.M.; Horner, M.M.; Ackerman, M.J. The diagnostic utility of recovery phase QTc during treadmill exercise stress testing in the evaluation of long QT syndrome. Heart Rhythm. 2011, 8(11), 1698-1704. doi: 10.1016/j.hrthm.2011.05.018.

73. Sy, R.W.; van der Werf, C.; Chattha, I.S.; Chockalingam, P.; Adler, A.; Healey, J.S.; Perrin, M.; Gollob, M.H.; Skanes, A.C.; Yee, R.; Gula, L.J.; Leong-Sit, P.; Viskin, S.; Klein, G.J.; Wilde, A.A.; Krahn, A.D. Derivation and validation of a simple exercise-based algorithm for prediction of genetic testing in relatives of LQTS probands. Circulation. 2011, 124(20), 2187-2194. doi: 10.1161/CIRCULATIONAHA.111.028258.

74. Zhang, L.; Timothy, K.W.; Vincent, G.M.; Lehmann, M.H.; Fox, J.; Giuli, L.C.; Shen, J.; Splawski, I.; Priori, S.G.; Compton, S.J.; Yanowitz, F.; Benhorin, J.; Moss, A.J.; Schwartz, P.J.; Robinson, J.L.; Wang, Q.; Zareba, W.; Keating, M.T.; Towbin, J.A.; Napolitano, C.; Medina, A. Spectrum of ST-T-wave patterns and repolarization parameters in congenital long-QT syndrome: ECG findings identify genotypes. Circulation. 2000, 102(23), 2849-2855. doi: 10.1161/01.cir.102.23.2849.

75. Viskin, S.; Postema, P.G.; Bhuiyan, Z.A.; Rosso, R.; Kalman, J.M.; Vohra, J.K.; Guevara-Valdivia, M.E.; Marquez, M.F.; Kogan, E.; Belhassen, B.; Glikson, M.; Strasberg, B.; Antzelevitch, C.; Wilde, A.A. The response of the QT interval to the brief tachycardia provoked by standing: a bedside test for diagnosing long QT syndrome. J Am Coll Cardiol. 2010, 55(18), 1955-1961. doi: 10.1016/j.jacc.2009.12.015.

76. Ackerman, M.J.; Khositseth, A.; Tester, D.J.; Hejlik, J.B.; Shen, W.K.; Porter, C.B. Epinephrine-induced QT interval prolongation: a gene-specific paradoxical response in congenital long QT syndrome. Mayo Clin Proc. 2002, 77(5), 413-421. doi: 10.4065/77.5.413.

77. Shimizu, W.; Noda, T.; Takaki, H.; Nagaya, N.; Satomi, K.; Kurita, T.; Suyama, K.; Aihara, N.; Sunagawa, K.; Echigo, S.; Miyamoto, Y.; Yoshimasa, Y.; Nakamura, K.; Ohe, T.; Towbin, J.A.; Priori, S.G.; Kamakura, S. Diagnostic value of epinephrine test for genotyping LQT1, LQT2, and LQT3 forms of congenital long QT syndrome. Heart Rhythm. 2004, 1(3), 276-283. doi: 10.1016/j.hrthm.2004.04.021.

78. Vyas, H.; Hejlik, J.; Ackerman, M.J. Epinephrine QT stress testing in the evaluation of congenital long-QT syndrome: diagnostic accuracy of the paradoxical QT response. Circulation. 2006, 113(11), 1385-1392. doi: 10.1161/CIRCULATIONAHA.105.600445.

79. Schwartz, P.J.; Moss, A.J.; Vincent, G.M.; Crampton, R.S. Diagnostic criteria for the long QT syndrome. An update. Circulation. 1993, 88(2), 782-784. doi: 10.1161/01.cir.88.2.782.

80. Schwartz, P.J.; Crotti, L. QTc behavior during exercise and genetic testing for the long-QT syndrome. Circulation. 2011, 124(20), 2181-2184. doi: 10.1161/CIRCULATIONAHA.111.062182.

81. Priori, S.G.; Wilde, A.A.; Horie, M.; Cho, Y.; Behr, E.R.; Berul, C.; Blom, N.; Brugada, J.; Chiang, C.E.; Huikuri, H.; Kannankeril, P.; Krahn, A.; Leenhardt, A.; Moss, A.; Schwartz, P.J.; Shimizu, W.; Tomaselli, G.; Tracy, C. HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes: document endorsed by HRS, EHRA, and APHRS in May 2013 and by ACCF, AHA, PACES, and AEPC in June 2013. Heart Rhythm. 2013, 10(12), 1932-1963. doi: 10.1016/j.hrthm.2013.05.014.

82. Castiglione, A.; Odening, K. QT-Zeit – Was fange ich eigentlich damit an? [QT interval and its prolongation - what does it mean?]. Dtsch Med Wochenschr. 2020, 145(8), 536-542. doi: 10.1055/a-0969-6312.

83. Parks, K.A.; Parks, C.G.; Yost, J.P.; Bennett, J.I.; Onwuameze, O.E. Acute blood pressure changes associated with antipsychotic administration to psychiatric inpatients. Prim Care Companion CNS Disord. 2018, 20(4), 18m02299. doi:10.4088/PCC.18m02299.

84. Nagy, D.; DeMeersman, R.; Gallagher, D.; Pietrobelli, A.; Zion, A.S.; Daly, D.; Heymsfield, S.B. QTc interval (cardiac repolarization): prolongationg after meals. Obes Res. 1997, 5(6), 531-537. doi: 10.1002/j.1550-8528.1997.tb00573.x.

85. Wenzel-Seifert, K.; Wittmann, M.; Haen, E. QTc prolongation by psychotropic drugs and the risk of Torsade de Pointes. Dtsch Arztebl Int. 2011, 108(41), 687-93. doi: 10.3238/arztebl.2011.0687.

86. Brown, D.W.; Giles, W.H.; Greenlund, K.J.; Valdez, R.; Croft, J.B. Impaired fasting glucose, diabetes mellitus, and cardiovascular disease risk factors are associated with prolonged QTc duration. Results from the Third National Health and Nutrition Examination Survey. J Cardiovasc Risk. 2001, 8(4), 227-33. doi: 10.1177/174182670100800407.

87. van Noord, C.; Eijgelsheim, M.; Stricker, B.H. Drug- and non-drug-associated QT interval prolongation. Br J Clin Pharmacol. 2010, 70(1), 16-23. doi: 10.1111/j.1365-2125.2010.03660.x.

88. Carella, M.J.; Mantz, S.L.; Rovner, D.R.; Willis, P.W.; Gossain, V.V.; Bouknight, R.R.; Ferenchick, G.S. Obesity, adiposity, and lengthening of the QT interval: improvement after loss. Int J ObesRelatMetabDisord. 1996, 20(10), 938-942. PMID: 8910099.

89. El-Gamal, A.; Gallagher, D.; Nawras, A.; Gandhi, P.; Gomez, J.; Allison, D.B.; Steinberg, J.S.; Shumacher, D.; Blank, R.; Heymsfield, S.B. Effects of obesity on QT, RR, and QTc intervals. Am J Cardiol. 1995, 75(14), 956-959. doi:10.1016/s0002-9149(99)80700-0.

90. Zareba, W.; Lin, D.A. Antipsychotic drugs and QT interval prolongation. Psychiatr Q. 2003, 74(3), 291-306. doi: 10.1023/a:1024122706337.

91. Zipes, D.P.; Wellens, H.J.J. Sudden cardiac death. Circulation. 1998, 98(21), 2334-2351. PMID: 9826323.

92. Shah, A.A.; Aftab, A.; Coverdale, J. QTc prolongation with antipsychotics: is routine ECG monitoring recommended? J Psychiatr Pract. 2014, 20(3), 196-206. doi: 10.1097/01.pra.0000450319.21859.6d.

93. Joukamaa, M.; Helio¨vaara, M.; Knekt, P.; Aromaa, A.; Raitasalo, R.; Lehtinen, V. Schizophrenia, neuroleptic medication and mortality. Br J Psychiatry. 2006, 188, 122-127. doi: 10.1192/bjp.188.2.122.

94. Escande, D. Pharmacogenetics of cardiac K(+) channels. Eur J Pharmacol, 2000, 410(2-3), 281-287. doi: 10.1016/s0014-2999(00)00821-9.

95. Varkey, J.N.; Frishman, W.H. Arrhythmogenesis and COVID-19. Cardiol Rev. 2021, 29(6), 289-291. doi:10.1097/CRD.0000000000000407.

96. Vincent, G.M. The molecular genetics of the long QT syndrome: genes causing fainting and sudden death. Annu Rev Med. 1998, 49, 263-274. doi: 10.1146/annurev.med.49.1.263.

97. Khera, A.V.; Mason-Suares, H.; Brockman, D.; Wang, M.; VanDenburgh, M.J.; Senol-Cosar, O.; Patterson, C.; Newton-Cheh, C.; Zekavat, S.M.; Pester, J.; Chasman, D.I.; Kabrhel, C.; Jensen, M.K.; Manson, J.E.; Gaziano, J.M.; Taylor, K.D.; Sotoodehnia, N.; Post, W.S.; Rich, S.S.; Rotter, J.I.; Lander, E.S.; Rehm, H.L.; Ng, K.; Philippakis, A.; Lebo, M.; Albert, C.M.; Kathiresan, S. Rare genetic variants associated with sudden cardiac death in adults. J Am Coll Cardiol, 2019, 74(21), 2623-2634. doi: 10.1016/j.jacc.2019.08.1060.

98. Chen, L.; Zhang, W.; Fang, C.; Jiang; Shan; Shu, C.; Cheng, H.; Li, F.; Li, H. Polymorphism H558R in the human cardiac sodium channel SCN5A gene is associated with atrial fibrillation. J Int Med Res, 2011, 39(5), 1908–1916. doi: 10.1177/147323001103900535.

99. Spellmann, I.; Reinhard, M.A.; Veverka, D.; Zill, P.; Obermeier, M.; Dehning, S.; Schennach, R.; Müller, N.; Möller, H.J.; Riedel, M.; Musil, R. QTc prolongation in short-term treatment of schizophrenia patients: effects of different antipsychotics and genetic factors. Eur Arch Psychiatry Clin Neurosci, 2018, 268(4), 383-390. doi: 10.1007/s00406-018-0880-8.

100. Gouas L., Nicaud V., Berthet M., Forhan A., Tiret L., Balkau B., Guicheney P; D.E.S.I.R. Study Group. Association of KCNQ1, KCNE1, KCNH2 and SCN5A polymorphisms with QTc interval length in a healthy population. Eur J Hum Genet. 2005 Nov;13(11):1213-22. doi: 10.1038/sj.ejhg.5201489.

101. Hobday, P.M.; Mahoney, D.W.; Urban, L.H.; Jacobsen, S.J.; Makielski, J.M.; Olson, T.M.; Rodeheffer, R.J.; Ackerman, M.J. Influence of the common H558R-SCN5A sodium channel polymorphism on the electrocardiographic phenotype in a populationbased study. Heart Rhythm, 2005, 3, S279–S280. doi: 10.1016/j.hrthm.2006.02.837.

102. Lehtinen, A.B.; Daniel, K.R.; Shah, S.A.; Nelson, M.R.; Ziegler, J.T.; Freedman, B.I.; Carr, J.J.; Herrington, D.M.; Langefeld, C.D.; Bowden, D.W. Relationship between genetic variants in myocardial sodium and potassium channel genes and QT interval duration in diabetics: the Diabetes Heart Study. Ann Noninvasive Electrocardiol, 2009, 14(1), 72-79. doi: 10.1111/j.1542-474X.2008.00276.x.

103. Pfeufer, A.; Sanna, S.; Arking, D.E.; Müller, M.; Gateva, V.; Fuchsberger, C.; Ehret, G.B.; Orrú, M.; Pattaro, C.; Köttgen, A.; Perz, S.; Usala, G.; Barbalic, M.; Li, M.; Pütz, B.; Scuteri, A.; Prineas, R.J.; Sinner, M.F.; Gieger, C.; Najjar, S.S.; Kao, W.H.; Mühleisen, T.W.; Dei, M.; Happle, C.; Möhlenkamp, S.; Crisponi, L.; Erbel, R.; Jöckel, K.H.; Naitza, S.; Steinbeck, G.; Marroni, F.; Hicks, A.A.; Lakatta, E.; Müller-Myhsok, B.; Pramstaller, P.P.; Wichmann, H.E.; Schlessinger, D.; Boerwinkle, E.; Meitinger, T.; Uda, M.; Coresh, J.; Kääb, S.; Abecasis, G.R.; Chakravarti, A. Common variants at ten loci modulate the QT interval duration in the QTSCD Study. Nat Genet, 2009, 41(4), 407–414. doi: 10.1038/ng.362.

104. Chiang, C.E.; Roden, D.M. The long QT syndromes: genetic basis and clinical implications. J Am CollCardiol, 2000, 36(1), 1-12. doi: 10.1016/s0735-1097(00)00716-6.

105. Koskela, J.; Kähönen, M.; Fan, M.; Nieminen, T.; Lehtinen, R.; Viik, J.; Nikus, K.; Niemelä, K.; Kööbi, T.; Turjanmaa, V.; Pörsti, I.; Lehtimäki, T. Effect of common KCNE1 and SCN5A ion channel gene variants on T-wave alternans, a marker of cardiac repolarization, during clinical exercise stress test: the Finnish Cardiovascular Study. Transl Res., 2008, 152(2), 49-58. doi: 10.1016/j.trsl.2008.06.003.

106. Barhanin, J.; Lesage, F.; Guillemare, E.; Fink, M.; Lazdunski, M.; Romey, G. K(V)LQT1 and lsK (minK) proteins associate to form the I(Ks) cardiac potassium current. Nature. 1996, 384(6604), 78-80. doi: 10.1038/384078a0.

107. Marx, S.O.; Kurokawa, J.; Reiken, S.; Motoike, H.; D'Armiento, J.; Marks, A.R.; Kass, R.S. Requirement of a macromolecular signaling complex for beta adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel. Science, 2002, 295(5554), 496-499. doi: 10.1126/science.1066843.

108. de Villiers, C.P.; van der Merwe, L.; Crotti, L.; Goosen, A.; George, A.L.Jr.; Schwartz, P.J.; Brink, P.A.; Moolman-Smook, J.C.; Corfield, V.A. AKAP9 is a genetic modifier of congenital long-QT syndrome type 1. Circ Cardiovasc Genet., 2014, 7(5), 599-606. doi: 10.1161/CIRCGENETICS.113.000580.

109. Akyol, M.; Jalilzadeh, S.; Sinner, M.F.; Perz, S.; Beckmann, B.M.; Gieger, C.; Illig, T.; Wichmann, H.E.; Meitinger, T.; Kääb, S.; Pfeufer, A. The common non-synonymous variant G38S of the KCNE1-(minK)-gene is not associated to QT interval in Central European Caucasians: results from the KORA study. Eur Heart J., 2007, 28(3), 305-309. doi: 10.1093/eurheartj/ehl460.

110. Clinical psychopharmacogenetics. Ed.: Nasyrova R.F., Neznanov N.G. Publisher DEAN: Saint-Petersburg, Russia, 2020. pp. 30-31.

111. Balestrini, S.; Sisodiya, S.M. Pharmacogenomics in epilepsy. Neurosci Lett., 2018, 667, 27-39. doi: 10.1016/j.neulet.2017.01.014

112. Fanoe, S.; Kristensen, D.; Fink-Jensen, A.; Jensen, H.K.; Toft, E.; Nielsen, J.; Videbech, P.; Pehrson, S.; Bundgaard, H. Risk of arrhythmia induced by psychotropic medications: a proposal for clinical management. Eur Heart J., 2014, 35(20), 1306-1315. doi: 10.1093/eurheartj/ehu100.

113. SNPedia. https://www.snpedia.com/index.php/SNPedia (accessed on 23.10.2021)


Review

For citations:


Zhuravlev N.M., Shnayder N.A., Vaiman E.E., Abdyrakhmanova A.K., Petrova M.M., Bochanova E.N., Romanova I.V., Gavrilyuk O.A., Lareva N.V., Nasyrova R.F. Interindividual Variability of Anticonvulsant-Induced QT Prolongation Risk. Personalized Psychiatry and Neurology. 2022;2(1):22-45. https://doi.org/10.52667/2712-9179-2022-2-1-23-45

Views: 1274


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2712-9179 (Online)