Preview

Personalized Psychiatry and Neurology

Advanced search

Pharmacogenetics of fluoxetine

https://doi.org/10.52667/712-9179-2021-1-1-93-101

Full Text:

Abstract

There is a number of antidepressants (ADs) which prevent reabsorption of neurotransmitters in the body. Known together as reuptake inhibitors, they prevent the reuptake of one or some neurotransmitters so that the majority of them is present and active in the brain. Selective serotonin reuptake inhibitors (SSRIs) work at the expense of specific inhibition of serotonin reuptake. Such new SSRIs fluoxetine (FXT), are effective for treatment of depressive disorders in most cases of schizophrenia. The effectiveness of SSRIs is not immediate; therefore, medication can take up to several weeks to be fully effective. FXT is one of the top ten prescribed antidepressants. FXT is prescribed in cases of depressive disorders in adults and adolescents [1], obsessive-compulsive and anxiety-depressive disorders [2], as well as for the therapy of bulimia nervosa [3]. Pharmacogenetic markers of FXT safety are being actively studied. Some pharmacogenetic markers of therapy safety have been established: genes of serotonin receptor isoforms and its transporters (HTR1A, HTR1B, SCL6A4).

About the Authors

M. A. Novitsky
V. M. Bekhterev National Medical Research Centre for Psychiatry and Neurology
Russian Federation

3. Bekhterev str., 192019, Saint-Petersburg



S. D. Skopin
V. M. Bekhterev National Medical Research Centre for Psychiatry and Neurology
Russian Federation

3. Bekhterev str., 192019, Saint-Petersburg



V. V. Kravtsov
V. M. Bekhterev National Medical Research Centre for Psychiatry and Neurology
Russian Federation

3. Bekhterev str., 192019, Saint-Petersburg



References

1. Gibbons, R.D.; Hur, K.; Brown, C.H.; Davis, J.M.; Mann J.J. Benefits from antidepressants: synthesis of 6-week patient-level outcomes from double-blind placebo-controlled randomized trials of fluoxetine and venlafaxine. Archives of General Psychiatry, 2012, 69, 6, doi:10.1001/archgenpsy-chiatry.2011.2044.

2. Food and Drug Association. Prozac Label (PDF), 2014, https://web.archive.org/web/20160304035901/http://www.accessdata.fda.gov/drugsatfda_docs/la-bel/2014/018936s102lbl.pdf.

3. Aigner, M.; Treasure, J.; Kaye, W.; Kasper, S. World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for the pharmacological treatment of eating disorders (PDF). The World Journal of Biological Psychiatry, 2011, 12, 400–443, doi: 10.3109/15622975.2011.602720.

4. Cipriani A.; Furukawa, T. A.; Salanti, G.; Chaimani, A., Atkinson, L.Z., Ogawa, Y. et al. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: a systematic review and network meta-analysis. Lancet, 2018, 391, 1357–1366, doi: 10.1016/S0140-6736(17)32802-7.

5. Fuller, R.W.; Wong, D.T.; Robertson, D.W. Fluoxetine, a selective inhibitor of serotonin uptake. Medicinal Research Reviews, 1991, 11, 17–34, doi:10.1002/med.2610110103.

6. “Bipolar disorder: the assessment and management of bipolar disorder in adults, children and young people in primary and secondary care. 1-recommendations. Guidance and guidelines. NICE”. Retrieved 26 July 2016.

7. Clark, M.S.; Jansen, K.; Bresnahan, M. Clinical inquiry: How do antidepressants affect sexual function? The Journal of Family Practice, 2013, 62, 660–661.

8. Koda-Kimble, M.A.; Alldredge, B.K. Applied therapeutics: the clinical use of drugs (10th ed.). Baltimore: Wolters Kluwer Health//Lippincott Williams & Wilkins, 2012.

9. Bhat V.; Kennedy, S.H. Recognition and management of antidepressant discontinuation syndrome. J Psychiatry Neurosci., 2017, 42, 7–8.

10. Huybrechts, K.F.; Palmsten, K.; Avorn, J.; Cohen, L.S.; Holmes, L.B.; Franklin, J.M. et al. Antidepressant use in pregnancy and the risk of cardiac defects. The New England Journal of Medicine, 2014, 370, 2397–2407, doi:10.1056/NEJMoa1312828.

11. FDA. Antidepressant Use in Children, Adolescents, and Adults. Published May 2, 2007. Archived 6 January 2016 at the Wayback Machine.

12. Stone, M.B.; Jones, M.L. Clinical Review: Relation-ship Between Antidepressant Drugs and Suicidality in Adults (PDF). Overview for December 13 Meeting of Psychopharmacologic Drugs Advisory Committee (PDAC). FDA, 2006, 11–74.

13. Brayfield, A. Fluoxetine Hydrochloride. Martindale: The Complete Drug Reference. London, UK: Pharmaceutical Press, 2013.

14. Sommi, R.W.; Crismon, M.L.; Bowden, C.L. Fluoxetine: a serotonin-specific, second-generation antidepressant. Pharmacotherapy, 1987, 7, 1-15.

15. Perez-Caballero, L.; Torres-Sanchez, S.; Bravo, L.; Mico, J.A.; Berrocoso, E. Fluoxetine: a case history of its discovery and preclinical development. Expert Opinion on Drug Discovery, 2014, 9, 567–578.doi:10.1517/17460441.2014.907790.

16. Fluoxetine. Medscape.com https://reference.medscape.com/drug/prozac-sarafem-fluoxetine-342955.

17. Instructions for the use of the drug fluoxetine®, agreed with the Ministry of Health of Russia on August 31, 2009, registration number reg. No: P N003164 / 01.

18. Drugs@FDA: FDA Approved Drug Products.

19. “PROZAC® Fluoxetine Hydrochloride” (PDF). TGA eBusiness Services. Eli Lilly Australia Pty. Limited. 9 October 2013.

20. Van Harten, J. Clinical pharmacokinetics of selective serotonin reuptake inhibitors. Clin Pharmacokinet., 1993, 24, 203-220, doi: 10.2165/00003088-199324030-00003.

21. Mandrioli, R.; Forti, G.C.; Raggi, M.A. Fluoxetine metabolism and pharmacological interactions: the role of cytochrome p450. Current Drug Metabolism, 2006, 7, 127–133, doi:10.2174/138920006775541561.

22. Fjordside, L.; Jeppesen, U.; Eap, C.B.; Powell, K.; Baumann, P.; Brøsen, K. The stereoselective metabolism of fluoxetine in poor and extensive metabolizers of sparteine. Pharmacogenetics, 1999, 9, 55-60.

23. Ring, B.J.; Eckstein, J.A.; Gillespie, J.S.; Binkley, S.N.; Vanden-Branden, M.; Wrighton, S.A. Identification of the human cytochromes p450 responsible for in vitro formation of R- and S-norfluoxetine. J Pharmacol Exp Ther., 2001, 297, 1044-1050.

24. “Drug Treatments in Psychiatry: Antidepressants”. Newcastle University School of Neurology, Neurobiology and Psychiatry, 2005.

25. Pérez, V.; Puiigdemont, D.; Gilaberte, I.; Alvarez, E.; Artigas, F. et al. (Grup de Recerca en Trastorns Afectius). Augmentation of fluoxetine’s antidepressant action by pindolol: analysis of clinical, pharmacokinetic, and methodologic factors. Journal of Clinical Psychopharmacology, 2001, 21, 36–45.

26. Brunswick, D.J.; Amsterdam, J.D.; Fawcett, J.; Quitkin, F.M.; Reimherr, F.W.; Rosenbaum, J.F.; Beasley, C.M. Fluoxetine and norfluoxetine plasma concentrations during relapse-prevention treatment. Journal of Affective Disorders, 2002, 68, 243–249, doi:10.1016/s0165-0327(00)00333-5.

27. Henry, M.E.; Schmidt, M.E.; Hennen, J.; Villafuerte, R.A.; Butman, M.L.; Tran, P. et al. A comparison of brain and serum pharmacokinetics of R-fluoxetine and racemic fluoxetine: A 19-F MRS study. Neuropsychopharmacology, 2005, 30, 1576–1583, doi:10.1038/sj.npp.1300749.

28. Burke, W.J.; Hendricks, S.E.; McArthur-Miller, D.; Jacques, D.; Bessette, D.; McKillup, T. et al. Weekly dosing of fluoxetine for the continuation phase of treatment of major depression: results of a placebo-controlled, randomized clinical trial. Journal of Clinical Psychopharmacology, 2000, 20, 423–427, doi:10.1097/00004714-200008000-00006.

29. Hamelin, B.A.; Turgeon, J.; Vallée, F.; Bélanger, P.M.; Paquet, F.; LeBel, M. The disposition of fluoxetine but not sertraline is altered in poor metabolizers of debrisoquin. Clinical Pharmacology & Therapeutics, 1996, 60, 512–521, doi:10.1016/s0009-9236(96)90147-2.

30. Stedman, C.A.M.; Begg, E.J.; Kennedy, M.A.; Roberts, R.; Wilkinson, T.J. Cytochrome P450 2D6 genotype does not predict SSRI (fluoxetine or paroxetine) induced hyponatraemia. Human Psychopharmacology: Clinical and Experimental, 2002, 17, 187–190, doi:10.1002/hup.394.

31. Sallee, F.R.; DeVane, C.L.; Ferrell, R.E. Fluoxetine-Related Death in a Child with Cytochrome P-450 2D6 Genetic Deficiency. Journal of Child and Adolescent Psychopharmacology, 2000, 10, 27–34, doi:10.1089/cap.2000.10.27.

32. Charlier, C.; Broly, F.; Lhermitte, M.; Pinto, E.; Ansseau, M.; Plomteux, G. Polymorphisms in the CYP2D6 gene: association with plasma concentrations of fluoxetine and paroxetine. Ther Drug Monit., 2003, 25, 738-742.

33. Dorado, P.; Berecz, R.; Gonzalez, A.P.; Peas-LLed, E.M.; LLerena, A. Effect of CYP2D6 and CYP2C9 genotypes on fluoxetine and norfluoxetine plasma concentrations during steady-state conditions. European Journal of Clinical Pharmacology, 2004, 59, 869-873, doi:10.1007/s00228-003-0707-y.

34. Lundgren, H.; Bertilsson, L.; Kawanishi, C.; Lundgren, S. Increased incidence of CYP2D6 gene duplication in patients with persistent mood disorders: ultrarapid metabolism of antidepressants as a cause of nonresponse. A pilot studies. European Journal of Clinical Pharmacology, 2004, 59, 803–807, doi:10.1007/s00228-003-0701-4.

35. Shen, H.; He, M.M.; Liu, H.; Wrighton, S.A.; Wang, L.; Guo, B.; Li, C. Comparative Metabolic Capabilities and Inhibitory Profiles of CYP2D6.1, CYP2D6.10, and CYP2D6.17. Drug Metabolism and Disposition, 2007, 35, 1292–1300, doi:10.1124/dmd.107.015354.

36. Perlis, R.H.; Mischoulon, D.; Smoller, J.W.; Wan, Y-J.Y.; Lamon-Fava, S.; Lin, K.M. et al. Serotonin transporter polymorphisms and adverse effects with fluoxetine treatment. Biological Psychiatry, 2003, 54, 879–883, doi:10.1016/s0006-3223(03)00424-4.

37. Illi, A.; Poutanen, O.; Setälä-Soikkeli, E.; Kampman, O.; Viikki, M.; Huhtala, H. et al. Is 5-HTTLPR linked to the response of selective serotonin reuptake inhibitors in MDD? European Archives of Psychiatry and Clinical Neuroscience, 2010, 261, 95–102, doi:10.1007/s00406-010-0126-x.

38. Hong, C.J.; Chen, T.J.; Yu, Y.W-Y.; Tsai, S.J. Response to fluoxetine and serotonin 1A receptor (C-1019G) polymorphism in Taiwan Chinese major depressive disorder. The Pharmacogenomics Journal, 2005, 6, 27–33, doi:10.1038/sj.tpj.6500340.

39. Kim, H.; Lim, S.W.; Kim, S.; Kim, J.W.; Chang, Y.H.; Carroll, B.J.; Kim, D.K. Monoamine Transporter Gene Polymorphisms and Antidepressant Response in Koreans With Late-Life Depression. JAMA, 2006, 296, 1609, doi:10.1001/jama.296.13.1609.

40. Kim, D.K.; Lim, S.W.; Lee, S.; Sohn, S.E.; Kim, S.; Hahn, C.G.; Carroll, B.J. Serotonin transporter gene polymorphism and antidepressant response. NeuroReport., 2000, 11, 215–219, doi:10.1097/00001756-200001170-00042.

41. Gassó, P.; Rodríguez, N.; Mas, S.; Pagerols, M.; Blázquez, A.; Plana, M.T. et al. Effect of CYP2D6, CYP2C9 and ABCB1 genotypes on fluoxetine plasma concentrations and clinical improvement in children and adolescent patients. The Pharmacogenomics Journal, 2014, 14, 457–462, doi:10.1038/tpj.2014.12.

42. Liu, Z.; Zhu, F.; Yao, L.; Yang, C.; Xiao, L.; Zhu, J. et al. PDLIM5 gene polymorphisms and short-term antidepressant response in Chinese major depressive disorders. Int J Chin Exp Med. 2013, 6, 667-682.

43. Gassó, P.; Rodríguez, N.; Blázquez, A.; Monteagudo, A.; Boloc, D.; Plana, M.T. et al. Epigenetic and genetic variants in the HTR1B gene and clinical improvement in children and adolescents treated with fluoxetine. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2017, 75, 28–34, doi:10.1016/j.pnpbp.2016.12.003.

44. Tsai, S.J.; Liou, Y.J.; Hong, C.J.; Yu, Y.W.Y.; Chen, T.J. Glycogen synthase kinase-3β gene is associated with antidepressant treatment response in Chinese major depressive disorder. The Pharmacogenomics Journal, 2008, 8, 384–390, doi:10.1038/sj.tpj.6500486.

45. Liu, Z.; Zhu, F.; Wang, G.; Xiao, Z.; Tang, J.; Liu, W. et al. Association study of corticotropin-releasing hormone receptor1 gene polymorphisms and antidepressant response in major depressive disorders. Neuroscience Letters, 2007, 414, 155–158, doi:10.1016/j.neulet.2006.12.013.

46. Zou, Y.F.; Wang, F.; Feng, X.L.; Li, W.F.; Tao, J.H.; Pan, F.M. et al. Meta-analysis of FKBP5 gene polymorphisms association with treatment response in patients with mood disorders. Neuroscience letters, 2010, 484, 56-61, doi:10.1016/j.neulet.2010.08.019.

47. Yang, Z.; Ma, X.; Wang, Y.; Wang, J.; Xiang, B.; Wu, J. et al. Association of APC and REEP5 gene polymorphisms with major depression disorder and treatment response to antidepressants in a Han Chinese population. General hospital psychiatry, 2012, 34, 571-577, doi:10.1016/j.gen-hosppsych.2012.05.015.

48. Illi, A.; Setälä-Soikkeli, E.; Viikki, M.; Poutanen, O.; Huhtala, H.; Mononen, N. et al. 5-HTR1A, 5-HTR2A, 5-HTR6, TPH1 and TPH2 polymorphisms and major depression. Neuroreport., 2009, 20, 1125-1128, doi:10.1097/WNR.0b013e32832eb708.

49. Tsai, S.J.; Hong, C.J.; Liou, Y.J.; Yu, Y.W.Y.; Chen, T.J. Plasminogen activator inhibitor-1 gene is associated with major depression and antidepressant treatment response. Pharmacogenetics and genomics, 2008, 18, 869-875, doi: 10.1097/FPC.0b013e328308bbc0.

50. Licinio, J.; Dong, C.; Wong, M.L. Novel sequence variations in the brain-derived neurotrophic factor gene and association with major depression and antidepressant treatment response. Archives of general psychiatry, 2009, 66, 488-496, doi: 10.1001/archgenpsychiatry.2009.38.


For citation:


Novitsky M.A., Skopin S.D., Kravtsov V.V. Pharmacogenetics of fluoxetine. Personalized Psychiatry and Neurology. 2021;1(1):93-101. https://doi.org/10.52667/712-9179-2021-1-1-93-101

Views: 534


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2712-9179 (Online)