Preview

Personalized Psychiatry and Neurology

Advanced search

A Personalized Approach to Phytotherapy for Pain and Inflammation in Patients with Intervertebral Disc Degeneration: Prospects and Limitations

https://doi.org/10.52667/2712-9179-2025-5-4-26-68

Abstract

Phytotherapy, as a traditional medicine method, has diverse therapeutic properties that can be used for disease-modifying therapy of intervertebral disc degeneration (IDD) in humans. Of particular interest are herbal remedies for the correction of chronic inflammation (primarily cytokine imbalance). The aim of this descriptive review is to update knowledge about herbal methods that are promising or traditionally used for the correction of cytokine imbalance in IDD. The results of preclinical and clinical studies and publications of historical interest on the traditional use of herbal remedies in Eastern and Western medicine were analyzed. Most herbal remedies for the correction of cytokine imbalance in IDD have evidence classes C and D, while the number of herbal remedies with evidence classes A and B is still small, despite many years and even centuries of experience in traditional medicine. In recent decades, there has been a trend toward increased research interest in this topic, with a growing number of preclinical studies of herbal remedies in animal models of IDD and arthritis (including arthritis of the facet joints of the spine). This review has demonstrated that traditional herbal medicine has not lost its clinical significance and can be used as a component of disease-modifying therapy for IDD in humans. Planning and conducting new preclinical and clinical studies of herbal remedies for this disease are necessary to increase the level of evidence for their use in clinical practice in accordance with modern requirements.

About the Authors

Azamat V. Ashkhotov
V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology
Russian Federation

192019 Saint Petersburg



Vera V. Trefilova
V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology
Russian Federation

192019 Saint Petersburg



Asiyat M. Shirukova
V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology
Russian Federation

192019 Saint Petersburg



Natalia A. Shnayder
V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology; V.F. Voino-Yasenetsky Krasnoyarsk State Medical University
Russian Federation

192019 Saint Petersburg; 660022 Krasnoyarsk



Marina M. Petrova
V.F. Voino-Yasenetsky Krasnoyarsk State Medical University
Russian Federation

660022 Krasnoyarsk



Vera S. Chavyr
V.F. Voino-Yasenetsky Krasnoyarsk State Medical University
Russian Federation

660022 Krasnoyarsk



References

1. Organization WH. WHO traditional medicine strategy: 2014–2023. 2013. https://www.who.int/publications/i/item/9789241506096.

2. Efremova, T. F. Herbal medicine. Modern explanatory dictionary of the Russian language: In 3 volumes - M.: AST, Astrel, Harvest, 2006; 3: R - Ya., 544.

3. Walker, A.F. Herbal medicine: the science of the art. Proc. Nutr. Soc. 2006; 65:145–152. https://doi.org/10.1079/pns2006487.

4. Spelman, K.; Duke, J.A.; Bogenschutz-Godwin, M.J. The synergy principle in plants, pathogens, insects, herbivores and humans. In: Kaufman, P.B. (Ed.), Natural Products from Plants. 2006b; 2e. CRC Press, Boca Raton, FL, 475–501.

5. Agoston, V.; Csermely, P.; Pongor, S. Multiple weak hits confuse complex systems: a transcriptional regulatory network as an example. Phys Rev E Stat Nonlin Soft Matter Phys. 2005; 71:051909. https://doi.org/10.1103/PhysRevE.71.051909.

6. Williamson, E.M. Synergy and other interactions in phytomedicines. Phytomedicine. 2001; 8:401-409. https://doi.org/10.1078/0944-7113-00060.

7. Ernst, E. Herbal medicines put into context. BMJ. 2003, 327, 881-882. https://doi.org/10.1136/bmj.327.7420.881.

8. Wagner, H. Phytomedicine research in Germany. Environ. Health Perspect. 1999; 107:779–781. doi: 10.1289/ehp.99107779.

9. Shnayder, N.A.; Ashkhotov, A.V.; Trefilova, V.V.; Nurgaliev, Z.A.; Novitsky, M.A.; Petrova, M.M.; Narodova, E.A.; Al-Zamil, M.; Chumakova, G.A.; Garganeeva, N.P.; Nasyrova, R.F. Molecular basic of pharmacotherapy of cytokine imbalance as a component of intervertebral disc degeneration treatment. Int. J. Mol. Sci. 2023; 24:7692.

10. Sommer, C. Animal studies on neuropathic pain: the role of cytokines and cytokine receptors in pathogenesis and therapy. Schmerz. 1999; 13:315- 323. https://doi.org/10.1007/s004829900038.

11. Engel, A.; Kern, W.V.; Murdter, G.; Kern, P. Kinetics and correlation with body temperature of circulating interleukin-6, interleukin-8, tumor necrosis factor alpha and interleukin-1 beta in patients with fever and neutropenia. Infection. 1994; 22:160-164. https://doi.org/10.1007/BF01716695.

12. Wichers, M.; Maes, M. The psychoneuroimmunopathophysiology of cytokine-induced depression in humans. Int J Neuropsychopharmacol. 2002; 5:375- 388. https://doi.org/10.1017/S1461145702003103.

13. Belardelli, F.; Ferrantini, M. Cytokines as a link between innate and adaptive antitumor immunity. Trends Immunol. 2002; 23:201-208. doi: 10.1016/s1471-4906(02)02195-6.

14. Burns, J.J.; Zhao, L.; Will Taylor, E.; Spelman, K. The influence of traditional herbal formulas on cytokine activity. Toxicology. 2010; 278(1):40-159, https://doi.org/10.1016/j.tox.2009.09.020.

15. Zhang, Y.W.; Wu, C.Y.; Cheng, J.T. Merit of Astragalus polysaccharide in the improvement of early diabetic nephropathy with an effect on mRNA expressions of NF-kappaB and IkappaB in renal cortex of streptozotoxin-induced diabetic rats. J Ethnopharmacol. 2007; 114(3):387-92. https://doi.org/10.1016/j.jep.2007.08.024.

16. Rader, D.J. Inflammatory markers of coronary risk. N Engl J Med. 2000; 343:1179-1182. doi: 10.1056/NEJM200010193431609.

17. Hodge, G.; Hodge, S.; Han, P. Allium sativum (garlic) suppresses leukocyte inflammatory cytokine production in vitro: potential therapeutic use in the treatment of inflammatory bowel disease. Cytometry. 2002; 48:209-215. https://doi.org/10.1002/cyto.10133.

18. Ebadi, M.S. Pharmacodynamic basis of herbal medicine. Boca Raton, FL, CRC Press. 2002.

19. Huang, K.C.; Williams, W.M. The pharmacology of chinese herbs. 2nd ed. Boca Raton, CRC Press. 1999.

20. Khyade, M.S.; Vaikos, N.P. Phytochemical and antibacterial properties of leaves of Alstonia scholaris. R. Br. Afr J Biotechnol. 2009, 8, 6434–6436.

21. Tiwari, O.P.; Sharma, M. Anti-arthritic evaluation of some traditionally used medicinal plants in FCA induced arthritis in rats. J Drug Deliv Ther. 2017; 7:74–79. https://doi.org/10.22270/jddt.v7i4.1475.

22. Gupta, S.; Mishra, K.P.; Singh, S.B.; Ganju, L. Inhibitory effects of andrographolide on activated macrophages and adjuvant-induced arthritis. Inflammopharmacology. 2018; 26:447–456. https://doi.org/10.1007/s10787-017-0375-7.

23. Li, Y.; He, S.; Tang, J.; Ding, N.; Chu, X.; Cheng, L.; Ding, X.; Liang, T.; Feng, S.; Rahman, S.U.; Wang, X. Andrographolide inhibits inflammatory cytokines secretion in LPS-stimulated RAW264. 7 cells through suppression of NF-jB/ MAPK signaling pathway. Evid Based Complement Alternat Med. 2017; 2017:8248142. https://doi.org/10.1155/2017/8248142.

24. Kast, R.E. Borage oil reduction of rheumatoid arthritis activity may be mediated by increased cAMP that suppresses tumor necrosis factor-alpha. Int Immunopharmacol. 2001; 1:2197–2199. https://doi.org/10.1016/s1567-5769(01)00146-1.

25. Venkatesh, H.N.; Sudharshana, T.; Umesh, A.; Thippeswamy, S.; Kiragandur, M.; Devihalli, M. Antifungal and antimycotoxigenic properties of chemically characterised essential oil of Boswellia serrata Roxb. ex Colebr. Int J Food Prop. 2017; 20:1856–1868. https://doi.org/10.1080/10942912.2017.1354882

26. Gonen, T.; Amital, H. Cannabis and Cannabinoids in the treatment of rheumatic diseases. Rambam Maimonides Med J. 2020; 11:e0007. https://doi.org/10.5041/RMMJ.10389.

27. Nagarkatti, P.; Pandey, R.; Rieder, S.A.; Hegde, V.L.; Nagarkatti, M. Cannabinoids as novel anti-inflammatory drugs. Future Med Chem. 2009; 1:1333–1349. https://doi.org/10.4155/fmc.09.93.

28. Shimizu, T.; Takahata, M.; Kameda, Y.; Endo, T.; Hamano, H.; Hiratsuka, S.; Ota, M.; Iwasaki, N. Sialic acid-binding immunoglobulin-like lectin 15 (Siglec-15) mediates periarticular bone loss, but not joint destruction, in murine antigen-induced arthritis. Bone. 2015; 79:65–70. https://doi.org/10.1016/j.bone.2015.05.029.

29. Kulkarni, Y.A.; Agarwal, S.; Garud, M.S. Effect of Jyotishmati (Celastrus paniculatus) seeds in animal models of pain and inflammation. J Ayurveda Int Med. 2015; 6(2):82-88. https://doi.org/10.4103/0975-9476.146540.

30. Kothavade, P.S.; Bulani, V.; Deshpande, P.; Chowdhury, A.; Juvekar, A. The petroleum ether fraction of Celastrus paniculatus Willd. seeds demonstrates antiarthritic effect in adjuvant-induced arthritis in rats. J Tradit Chin Med Sci. 2015; 2:183–193. https://doi.org/10.1016/j.jtcms.2016.02.004.

31. Vetal, S.; Bodhankar, S.; Mohan, V.; Thakurdesai, P. Anti-inflammatory and anti-arthritic activity of type-A procyanidine polyphenols from bark of Cinnamomum zeylanicum in rats. Food Sci Human Wellness. 2013; 2: 59–67. https://doi.org/10.1016/j.fshw.2013.03.003.

32. Qadir, M.M.; Bhatti, A.; Ashraf, M.U.; Sandhu, M.A.; Anjum, S.; John, P. Immunomodulatory and therapeutic role of Cinnamomum verum extracts in collagen-induced arthritic BALB/c mice. Inflammopharmacology. 2018; 26:157–170. https://doi.org/10.1007/s10787-017-0349-9.

33. Mahmoud, N.; Ahmed, O.M. Citrus limon and paradisi fruit peel hydroethanolic extracts prevent the progress of complete Freund’s adjuvant-induced arthritis in male Wistar rats. Adv Anim Vet Sci. 2018; 6:443–455. https://doi.org/10.17582/journal.aavs/2018/6.10.443.455.

34. Zou, G.S.; Li, S.-J.; Zheng, S.-l.; Pan, X.; Huang, Z.-p. Lemon-Peel extract ameliorates rheumatoid arthritis by reducing xanthine oxidase and inflammatory cytokine levels. J Taiwan Inst Chem Eng. 2018; 93:54–62. https://doi.org/10.1016/j.jtice.2018.07.036

35. Kim, B.H.; Yoon, J.H.; Yang, J.I.; Myung, S.J.; Lee, J.H.; Jung, E.U.; Yu, S.J.; Kim, Y.J.; Lee, H.S.; Kim, C.Y. Guggulsterone attenuates activation and survival of hepatic stellate cell by inhibiting nuclear factor kappa B activation and inducing apoptosis. J Gastroenterol Hepatol. 2013; 28:1859–1868. https://doi.org/10.1111/jgh.12314.

36. Kamarudin, T.A.; Othman, F.; Mohd Ramli, E.S.; Md Isa, N.; Das, S. Protective effect of curcumin on experimentally induced arthritic rats: detailed histopathological study of the joints and white blood cell count. EXCLI J. 2012; 11:226-236.

37. Alvarez, L.; Rios, M.Y.; Esquivel, C.; Chávez, M.I.; Delgado, G.; Aguilar, M.I.; Villarreal, M.L.; Navarro, V. Cytotoxic isoflavans from eysenhardtia p olystachya. J Nat Prod. 1998, 61, 767–770. https://doi.org/10.1021/np970586b.

38. Maurya, S.K.; Raj, K.; Srivastava, A.K. Antidyslipidaemic activity of Glycyrrhiza glabra in high fructose diet induced dyslipidaemic Syrian golden hamsters. Indian J Clin Biochem. 2009, 24, 404-9. https://doi.org/10.1007/s12291-009-0072-4.

39. Fard, M.T.; Arulselvan, P.; Karthivashan, G.; Adam, S.K.; Fakurazi, S. Bioactive extract from Moringa oleifera inhibits the pro-inflammatory mediators in lipopolysaccharide stimulated macrophages. Pharmacogn Mag. 2015, 11(4), S556-63. https://doi.org/10.4103/0973-1296.172961.

40. Mahdi, H.J.; Khan, N.A.K.; Asmawi, M.Z.B.; Mahmud, R.; A/L Murugaiyah, V. In vivo anti-arthritic and anti-nociceptive effects of ethanol extract of Moringa oleifera leaves on complete Freund’s adjuvant (CFA)-induced arthritis in rats. Integr Med Res. 2018, 7, 85–94. https://doi.org/10.1016/j.imr.2017.11.002.

41. Rout, G.R.; Mahato, A.; Senapati, S. In vitro clonal propagation of Nyctanthes arbor tristis Linn.-a medicinal tree. Hort Sci (Prague). 2007, 34, 84–89. https://doi.org/10.1007/s10535-008-0101-9

42. Held, S.; Schieberle, P.; Somoza, V. Characterization of aterpineol as an anti-inflammatory component of orange juice by in vitro studies using oral buccal cells. J Agric Food Chem. 2007, 55, 8040–8046. https://doi.org/10.1021/jf071691m.

43. Uroos, M.; Abbas, Z.; Sattar, S.; Umer, N.; Shabbir, A.; Shafiq-Ur-Rehman; Sharif, A. Nyctanthes arbor-tristis ameliorated FCA-induced experimental arthritis: a comparative study among different extracts. Evid Based Complement Altern Med. 2017, 15, 93. https://doi.org/10.1155/2017/4634853.

44. Yarnell, E. Herbs for rheumatoid arthritis. Altern Complement Ther. 2017, 23, 149–156. https://doi.org/10.1089/act.2017.29123.eya.

45. Bang, J.S.; Oh, D.H.; Choi, H.M.; Sur, B.J.; Lim, S.J.; Kim, J.Y.; Yang, H.I.; Yoo, M.C.; Hahm, D.H.; Kim, K.S. Anti-inflammatory and antiarthritic effects of piperine in human interleukin 1b-stimulated fibroblast-like synoviocytes and in rat arthritis models. Arthritis Res Ther. 2009, 11, R49. https://doi.org/10.1186/ar2662.

46. Balbir-Gurman, A.; Fuhrman, B.; Braun-Moscovici, Y.; Markovits, D.; Aviram, M. Consumption of pomegranate decreases serum oxidative stress and reduces disease activity in patients with active rheumatoid arthritis: a pilot study. Israel Med Assoc J. 2011, 13, 474–479.

47. Sun, K.; Zhu, L.G.; Wei, X.; Yin, H.; Zhan, J.W.; Yin, X.L.; Han, T. Research progress in mechanism of Chinese herbal compounds and monomers in delaying lumbar intervertebral disc degeneration. Zhongguo Zhong Yao Za Zhi. 2022, 47, 2400–8. https://doi.org/10.19540/j.cnki.cjcmm.20211020.401.

48. Cui, X.; Trinh, K.; Wang, Y.J. Chinese herbal medicine for chronic neck pain due to cervical degenerative disc disease. Cochrane Database Syst Rev. 2010, 2010, Cd006556. https://doi.org/10.1002/14651858.CD006556.pub2.

49. Yin, W.; Wang, T.S.; Yin, F.Z.; Cai, B.C. Analgesic and anti-inflammatory properties of brucine and brucine N-oxide extracted from seeds of Strychnos nux-vomica. J Ethnopharmacol. 2003, 88, 205–214. https://doi.org/10.1016/s0378-8741(03)00224-1.

50. Ekambaram, S.; Perumal, S.S.; Subramanian, V. Evaluation of antiarthritic activity of Strychnos potatorum Linn seeds in Freund’s adjuvant induced arthritic rat model. BMC Complement Altern Med. 2010, 10, 56. https://doi.org/10.1186/1472-6882-10-56.

51. Lad, H.; Bhatnagar, D. Amelioration of oxidative and inflammatory changes by Swertia chirayita leaves in experimental arthritis. Inflammopharmacology. 2016, 24, 363–375. https://doi.org/10.1007/s10787-016-0290-3.

52. Mandeville, A.; Cock, I.E. Terminalia chebula Retz. fruit extracts inhibit bacterial triggers of some autoimmune diseases and potentiate the activity of tetracycline. Indian J Microbiol. 2018, 58, 496–506. https://doi.org/10.1007/s12088-018-0754-9.

53. Ahmad, V.U.; Yasmeen, S.; Ali, Z.; Khan, M.A.; Choudhary, M.I.; Akhtar, F.; Miana, G.A.; Zahid, M. Taraxacin, a new guaianolide from Taraxacum wallichii. J. Nat. Prod. 2000, 63(7), 1010–1011. doi: 10.1021/np990495+.

54. Schutz, K.; Carle, R.; Schieber, A. Taraxacum - a review on its phytochemical and pharmacological profile. J. Ethnopharmacol. 2006, 107(3), 313–323. https://doi.org/10.1016/j.jep.2006.07.021.

55. San, Z.; Fu, Y.; Li, W.; Zhou, E.; Li, Y.; Song, X.; Wang, T.; Tian, Y.; Wei, Z.; Yao, M.; Cao, Y.; Zhang, N. Protective effect of taraxasterol on acute lung injury induced by lipopolysaccharide in mice. Int. Immunopharmacol. 2014, 19(2), 342–350. https://doi.org/10.1016/j.intimp.2014.01.031.

56. Zhang, X.M.; Xiong, H.Z.; Li, H.Y.; Cheng, Y. Protective effect of taraxasterol against LPS-induced endotoxic shock by modulating inflammatory responses in mice. Immunopharmacol. Immunotoxicol. 2014, 36(1), 11–16. https://doi.org/10.3109/08923973.2013.861482.

57. Liu, J.T.; Xiong, H.Z.; Cheng, Y.; Cui, C.D.; Zhang, X.; Xu, L.; Zhang, X.M. Effects of taraxasterol on ovalbumin-induced allergic asthma in mice. J. Ethnopharmacol. 2013, 148(3), 787–793. https://doi.org/10.1016/j.jep.2013.05.006.

58. Chen, J.; Wu, W.; Zhang, M.; Chen, C. Taraxasterol suppresses inflammation in IL-1β-induced rheumatoid arthritis fibroblast-like synoviocytes and rheumatoid arthritis progression in mice. Int Immunopharmacol. 2019, 70, 274-283. https://doi.org/10.1016/j.intimp.2019.02.029.

59. Jin, X.N.; Yan, E.Z.; Wang, H.M.; Sui, H.J.; Liu, Z.; Gao, W.; Jin, Y. Hyperoside exerts anti-inflammatory and anti-arthritic effects in LPS-stimulated human fibroblast-like synoviocytes in vitro and in mice with collagen-induced arthritis. Acta Pharmacol. Sin. 2016, 37(5), 674–686. https://doi.org/10.1038/aps.2016.7.

60. Shnayder, N.A.; Ashhotov, A.V.; Trefilova, V.V.; Nurgaliev, Z.A.; Novitsky, M.A.; Vaiman, E.E.; Petrova, M.M.; Nasyrova, R.F. Cytokine imbalance as a biomarker of intervertebral disk degeneration. Int J Mol Sci. 2023, 24(3), 2360. https://doi.org/10.3390/ijms24032360.

61. Nair, V.; Singh, S.; Gupta, Y.K. Anti-arthritic and disease modifying activity of Terminalia chebula Retz. in experimental models. J Pharm Pharmacol. 2010, 62, 1801–1806. https://doi.org/10.1111/j.2042-7158.2010.01193.x.

62. Prasad, L.; Husain Khan, T.; Jahangir, T.; Sultana, S. Chemomodulatory effects of Terminalia chebula against nickel chloride induced oxidative stress and tumor promotion response in male Wistar rats. J Trace Elem Med Biol. 2006, 20, 233–239. https://doi.org/10.1016/j.jtemb.2006.07.003.

63. Khan, M.A.; Subramaneyaan, M.; Arora, V.K.; Banerjee, B.D.; Ahmed, R.S. Effect of Withania somnifera (Ashwagandha) root extract on amelioration of oxidative stress and autoantibodies production in collagen-induced arthritic rats. J Complement Integr Med. 2015, 12(2), 117-25. https://doi.org/10.1515/jcim-2014-0075.

64. Singh, D.; Aggarwal, A.; Maurya, R.; Naik, S. Withania somnifera inhibits NF-jB and AP-1 transcription factors in human peripheral blood and synovial fluid mononuclear cells. Phytother Res. 2007, 21, 905–913. https://doi.org/10.1002/ptr.2180.

65. Khan, M.A.; Ahmed, R.S.; Chandra, N.; Arora, V.K.; Ali, A. In vivo, extract from Withania somnifera root ameliorates arthritis via regulation of key immune mediators of inflammation in experimental model of arthritis. Antiinflamm Antiallergy Agents Med Chem. 2019, 18, 55–70. https://doi.org/10.2174/1871523017666181116092934.

66. Song, C.; Chen, R.; Cheng, K.; Zhou, D.; Mei, Y.; Yan, J.; Liu, Z. Exploring the pharmacological mechanism of Duhuo Jisheng Decoction in treating intervertebral disc degeneration based on network pharmacology. Medicine (Baltimore). 2023, 102(22), e33917. https://doi.org/10.1097/MD.0000000000033917.

67. Liu, Z.C.; Wang, Z.L.; Huang, C.Y.; Fu, Z.J.; Liu, Y.; Wei, Z.C.; Liu, S.G.; Ma, C.; Shen, J.L.; Duan, D.D. Duhuo Jisheng decoction inhibits SDF-1-induced inflammation and matrix degradation in human degenerative nucleus pulposus cells in vitro through the CXCR4/NF-κB pathway. Acta Pharmacol Sin. 2018, 39, 912–22. https://doi.org/10.1038/aps.2018.36.

68. Amitani, M.; Amitani, H.; Sloan, R. A.; Suzuki, H.; Sameshima, N.; Asakawa, A.; Nerome, Y.; Owaki, T.; Inui, A.; Hoshino, E. The translational aspect of complementary and alternative medicine for cancer with particular emphasis on Kampo. Frontiers in Pharmacology. 2015, 6, 150. https://doi.org/10.3389/fphar.2015.00150.

69. Shimato, Y.; Ota, M.; Asai, K.; Atsumi, T.; Tabuchi, Y.; Makino, T. Comparison of byakujutsu (Atractylodes rhizome) and sojutsu (Atractylodes lancea rhizome) on anti-inflammatory and immunostimulative effects in vitro. Journal of Natural Medicines. 2018, 72(1), 192–201. https://doi.org/10.1007/s11418-017-1131-4

70. Nakada, Y.; Takano, N.; Arai, M. Clinical reasoning in Kampo education for teaching Kampo beginners. Tokai Journal of Experimental & Clinical Medicine. 2018, 43(2), 68–73.

71. Cui, J.; Shin, T.; Kawano, T.; Sato, H.; Kondo, E.; Toura, I.; Kaneko, Y.; Koseki, H.; Kanno, M.; Taniguchi, M. Requirement for Vα14 T cells in IL-12-mediated rejection of tumors. Science. 1997, 278, 1623–1626. https://doi.org/10.1126/science.278.5343.

72. Matsumoto, T.; Sakurai, H.M.; Kiyohara, H.; Yamada, H. Orally administered decoction of Kampo (Japanese herbal) medicine “Juzen -Taiho –To” modulates cytokine secretion and induces NKT cells in mouse liver. Immunopharmacology. 2000, 46, 149–161. https://doi.org/10.1016/s0162-3109(99)00166-6.

73. Fujiki, K.; Nakamura, M.; Matsuda, T.; Isogai, M.; Ikeda, M.; Yamamoto, Y.; Kitamura, M.; Sazaki, N.; Yakushiji, F.; Suzuki, S.; Tomiyama, J.; Uchida, T.; Taniguchi, K. IL-12 and IL-18 induction and subsequent NKT activation effects of the Japanese botanical medicine Juzentaihoto. Int J Mol Sci. 2008, 9(7), 1142-1155. doi: 10.3390/ijms9071142.

74. Nishikawa, H.; Sakaguchi, S. Regulatory T cells in cancer immunotherapy. Current Opinion in Immunology. 2014, 27, 1–7. https://doi.org/10.1016/j.coi.2013.12.005.

75. Matsumoto, T.; Moriya, M.; Kiyohara, H.; Tabuchi, Y.; Yamada, H. H. a Kampo (traditional Japanese herbal) medicine, and its polysaccharide portion stimulate G-CSF secretion from intestinal epithelial cells. Evidence-based Complementary and Alternative Medicine. 2010, 7(3), 331–340. https://doi.org/10.1093/ecam/nen007.

76. Takaku, S.; Shimizu, M.; Takahashi, H. Japanese Kampo medicine Ninjin’yoeito synergistically enhances tumor vaccine effects mediated by CD8+ T cells. Oncology Letters. 2017, 13(5), 3471–3478. https://doi.org/10.3892/ol.2017.5937.

77. Kiyomi, A.; Matsuda, A.; Nara, M.; Yamazaki, K.; Imai, S.; Sugiura, M. Immunological differences in human peripheral blood mononuclear cells treated with traditional japanese herbal medicines Hochuekkito, Juzentaihoto, and Ninjin'yoeito from different pharmaceutical companies. Evid Based Complement Alternat Med. 2021, 2021, 7605057. https://doi.org/10.1155/2021/7605057.

78. Zhu, L.; Yu, C.; Zhang, X.; Yu, Z.; Zhan, F.; Yu, X.; Wang, S.; He, F.; Han, Y.; Zhao, H. The treatment of intervertebral disc degeneration using Traditional Chinese Medicine. Journal of Ethnopharmacology. 2020, 263, 113117. https://doi.org/10.1016/j.jep.2020.113117.

79. Sun, J.; Li, X.; Zhou, H.; Liu, X.; Jia, J.; Xie, Q.; Peng, S.; Sun, X.; Wang, Q.; Yi, L. Anti-GAPDH Autoantibody is associated with increased disease activity and intracranial pressure in systemic Lupus Erythematosus. J Immunol Res. 2019, 2019, 7430780. https://doi.org/10.1155/2019/7430780.

80. Jiang, Y.; Zhang, Q.; Wang, H.; Tang, D.; Zhang, Y.; Yimo, Z.; Yu, L. Expressions of IFN-γ and IL-4 before and after Treatment of Lupus Nephritis with Traditional Chinese Medicine Combined with Cyclophosphamide and Their Values for Efficacy Prediction and Evaluation. Iran J Public Health. 2020, 49(5), 886-895.

81. Xing, Q.; Fu, L.; Yu, Z.; Zhou, X. Efficacy and safety of integrated Traditional Chinese medicine and western medicine on the treatment of rheumatoid arthritis: a meta-analysis. Evidence Based Complementary and Alternative Medicine: eCAM. 2020, 2020, 15. https://doi.org/10.1155/2020/4348709.4348709.

82. Abe, H.; Sakaguchi, M.; Arichi, S. Pharmacological studies on a prescription containing Bupleuri Radix (IV). Effects of saikosaponin on the anti-inflammatory action of glucocorticoid. Nihon Yakurigaku Zasshi. 1982, 80(2), 155–161.

83. Yamazaki, K.; Kiyomi, A.; Imai, S.; Sugiura, M. Saireito (114) Increases IC50 and changes T-cell phenotype when used in combination with prednisolone therapy in human peripheral blood mononuclear cells. Evid Based Complement Alternat Med. 2022, 2022, 9738989. https://doi.org/10.1155/2022/9738989.

84. Fujii, O.; Kanai, T.; Kouzuma, S.; Baba, K.; Miki, A.; Hyodo, H.; Yamashita, T.; Unno, N.; Taketani, Y. Herbal medicines, Sairei-to and Tokishakuyaku-san, differently modulate the release of cytokines from decidual versus peripheral blood mononuclear cells. American Journal of Reproductive Immunology. 2001, 46(5), 369–372. https://doi.org/10.1034/j.1600-0897.2001.d01-26.x.

85. Korean Pharmacopuncture Institute. Pharmacopuncturology, Elsevier Korea, Seoul. 2011.

86. Park, J.; Lee, H.; Shin, B.C.; Lee, M.S.; Kim, B.; Kim, J.I. Pharmacopuncture in Korea: a systematic review and meta-analysis of randomized controlled trials, evid. Based. Complement, Alternative Media. 2016, 2016, 4683121. https://doi.org/10.1155/2016/4683121.

87. Park, S.H.; Hong, J.Y.; Kim, W.K.; Shin, J.S.; Lee, J.; Ha, I.H.; Chung, H.J.; Lee, S.K. Effects of SHINBARO2 on rat models of lumbar spinal stenosis. Mediators Inflamm. 2019, 2019, 7651470. https://doi.org/10.1155/2019/7651470.

88. Choi, H.S.; Lee, Y.J.; Kim, M.R.; Cho, J.H.; Kim, K.W.; Kim, E.J.; Ha, I.H. Survey of integrative treatment practices of Korean medicine doctors for cervical disc herniation: preliminary data for clinical practice guidelines. Evid Based Complement Alternat Med. 2019, 2019, 2345640. https://doi.org/10.1155/2019/2345640.

89. Oliveira, C.B.; Maher, C.G.; Pinto, R.Z.; Traeger, A.C.; Lin, C.C.; Chenot, J.F.; van Tulder, M.; Koes, B.W. Clinical practice guidelines for the management of non-specific low back pain in primary care: an updated overview. Eur Spine J. 2018, 27, 2791–803. https://doi.org/10.1007/s00586-018-5673-2.

90. Gao, W.; Feng, Z.; Zhang, S.; Wu, B.; Geng, X.; Fan, G.; Duan, Y.; Li, K.; Liu, K.; Peng, C. Anti-inflammatory and antioxidant effect of eucommia ulmoides polysaccharide in hepatic ischemia-reperfusion injury by regulating ROS and the TLR-4-NF-kappaB pathway. Biomed Res Int. 2020, 2020, 1860637. https://doi.org/10.1155/2020/1860637.

91. Kim, M.J.; Wang, H.S.; Lee, M.W. Anti-inflammatory effects of fermented bark of acanthopanax sessiliflorus and its isolated compounds on lipopolysaccharide-treated RAW 264. 7 macrophage cells. Evid Based Complement Alternat Med. 2020, 2020, 6749425. https://doi.org/10.1155/2020/6749425.

92. Lee, S.G.; Lee, E.J.; Park, W.D.; Kim, J.B.; Kim, E.O.; Choi, S.W. Anti-inflammatory and anti-osteoarthritis effects of fermented Achyranthes japonica Nakai. J Ethnopharmacol. 2012, 142, 634–41. https://doi.org/10.1016/j.jep.2012.05.020.

93. Hwang, L.; Ko, I.G.; Jin, J.J.; Kim, S.H.; Kim, C.J.; Jeon, J.W.; Han, J.H. Scolopendra subspinipes mutilans extract suppresses inflammatory and neuropathic pain in vitro and in vivo. Evid Based Complement Alternat Med. 2018, 2018, 5057372. https://doi.org/10.1155/2018/5057372.

94. He, J.; Li, X.; Wang, Z.; Bennett, S.; Chen, K.; Xiao, Z.; Zhan, J.; Chen, S.; Hou, Y.; Chen, J.; Wang, S.; Xu, J.; Lin, D. Therapeutic anabolic and anticatabolic benefits of natural chinese medicines for the treatment of osteoporosis. Front Pharmacol. 2019, 10, https://doi.org/1344. 10.3389/fphar.2019.01344.

95. Jung, H.W.; Mahesh, R.; Park, J.H.; Boo, Y.C.; Park, K.M.; Park, Y.K. Bisabolangelone isolated from Ostericum koreanum inhibits the production of inflammatory mediators by down-regulation of NF-kappaB and ERK MAP kinase activity in LPS-stimulated RAW264. 7 cells .Int Immunopharmacol. 2010, 10, 155–62. https://doi.org/10.1016/j.intimp.2009.10.010.

96. Chao, W.W.; Lin, B.F. Bioactivities of major constituents isolated from Angelica sinensis (Danggui). Chin Med. 2011, 6, 29. https://doi.org/10.1186/1749-8546-6-29.

97. Cho, G.; Han, K.; Yoon, J. Stability test and quantitative and qualitative analyses of the amino acids in pharmacopuncture extracted from Scolopendra subspinipes mutilans. J Pharmacopuncture. 2015, 18, 44–55. https://doi.org/10.3831/KPI.2015.18.005.

98. Lee, H.; Hwang, J.S.; Lee, D.G. Scolopendin, an antimicrobial peptide from centipede, attenuates mitochondrial functions and triggers apoptosis in Candida albicans. Biochem J. 2017, 474, 635–45. https://doi.org/10.1042/BCJ20161039.

99. Zhao, D.D.; Jiang, L.L.; Li, H.Y.; Yan, P.F.; Zhang, Y.L. Chemical components and pharmacological activities of terpene natural products from the genus paeonia. Molecules. 2016, 21, 10. https://doi.org/10.3390/molecules21101362.

100. Cho, H.K.; Kim, S.Y.; Choi, M.J.; Baek, S.O.; Kwak, S.G.; Ahn, S.H. The effect of GCSB-5 a new herbal medicine on changes in pain behavior and neuroglial activation in a rat model of lumbar disc herniation. J Korean Neurosurg Soc. 2016, 59, 98–105. https://doi.org/10.3340/jkns.2016.59.2.98.

101. Loffek, S.; Schilling, O.; Franzke, C.W. Series “matrix metalloproteinases in lung health and disease”: Biological role of matrix metalloproteinases: a critical balance. Eur Respir J. 2011, 38, 191–208. https://doi.org/10.1183/09031936.00146510.

102. Kim, W.K.; Shin, J.S.; Lee, J.; Koh, W.; Ha, I.H.; Park, H.J.; Lee, S.K.; Hong, J.Y. Effects of the administration of Shinbaro 2 in a rat lumbar disk herniation model. Front. Neurol. 2023, 14, 1044724. https://doi.org/10.3389/fneur.2023.1044724.

103. Chung, H.J.; Lee, H.S.; Shin, J.S.; Lee, S.H.; Park, B.M.; Youn, Y.S.; Lee, S.K. Modulation of acute and chronic inflammatory processes by a traditional medicine preparation GCSB-5 both in vitro and in vivo animal models. J Ethnopharmacol. 2010, 130(3), 450-9. https://doi.org/10.1016/j.jep.2010.05.020.

104. Spelman, K.; Burns, J.; Nichols, D.; Winters, N.; Ottersberg, S.; Tenborg, M. Modulation of cytokine expression by traditional medicines: a review of herbal immunomodulators. Alternative medicine review. 2006, 11(2), 128-50.

105. Budai, M.M.; Varga, A.; Milesz, S.; Tőzsér, J.; Benkő, S. Aloe vera downregulates LPS-induced inflammatory cytokine production and expression of NLRP3 inflammasome in human macrophages. Mol Immunol. 2013, 56, 471–479. https://doi.org/10.1016/j.molimm.2013.05.005.

106. Kshirsagar, A.D.; Panchal, P.V.; Harle, U.N.; Nanda, R.K.; Shaikh, H.M. Anti-inflammatory and antiarthritic activity of anthraquinone derivatives in rodents. Int J Inflam. 2014, 2014, 690596. https://doi.org/10.1155/2014/690596.

107. Yagi, A.; Yu, B.P. Prophylactic aloe components on autoimmune diseases: barbaloin, aloe-emodin, emodin, and fermented butyrate. J Gastroenterol Hepatol Res. 2018, 7, 2535–2541. https://doi.org/10.17554/j.issn.2224-3992.2018.07.762.

108. Yeşilada, E.; Küpeli, E. Berberis crataegina DC. Root exhibits potent anti-inflammatory, analgesic and febrifuge effects in mice and rats. J Ethnopharmacol. 2002, 79, 237–248. https://doi.org/10.1016/S0378-8741(01)00387-7.

109. Kumar, R.; Gupta, Y.K.; Singh, S. Anti-inflammatory and anti-granuloma activity of Berberis aristata DC. In experimental models of inflammation. Indian J Pharmacol. 2016, 48, 155–161. https://doi.org/10.4103/0253-7613.178831.

110. Alamgeer, Hasan, U.H.; Uttra, A.M.; Rasool, S. Evaluation of in vitro and in vivo anti-arthritic potential of Berberis calliobotrys. Bangladesh J Pharmacol. 2015, 10, 807–819. https://doi.org/10.3329/bjp.v10i4.23779.

111. Alamgeer, Uttra, A.M.; Hasan, U.H. Anti-arthritic activity of aqueous-methanolic extract and various fractions of Berberis orthobotrys Bien ex Aitch. BMC Complement Altern Med. 2017, 17(1), 371. https://doi.org/10.1186/s12906-017-1879-9.

112. Ivanovska, N.; Philipov, S.; Hristov, M. Influence of berberine on T-cell mediated immunity. Immunopharmacol Immunotoxicol. 1999, 21, 771–786. https://doi.org/10.3109/08923979909007141.

113. Wang, Z.; Chen, Z.; Yang, S.; Wang, Y.; Huang, Z.; Gao, J.; Tu, S.; Rao, Z. Berberine ameliorates collagen induced arthritis in rats associated with anti-inflammatory and anti-angiogenic effects. Inflammation. 2014, 37, 1789. https://doi.org/10.1007/s10753-014-9909-y.

114. Yang, Y.; Qi, J.; Wang, Q.; Du, L.; Zhou, Y.; Yu, H.; Kijlstra, A.; Yang, P. Berberine suppresses Th17 and dendritic cell responses. Invest Ophthalmol Vis Sci. 2013, 54, 2516–2522. https://doi.org/10.1167/iovs.12-11217.

115. Ivanovska, N.; Philipov, S. Study on the anti-inflammatory action of Berberis vulgaris root extract, alkaloid fractions and pure alkaloids. Int J lmmunopharmacol. 1996, 18, 553–561. https://doi.org/10.1016/S0192-0561(96)00047-1.

116. Mashwani, Z.; Khan, M.A.; Irum, S.; Ahmad, M. Antioxidant potential of root bark of Berberis lycium Royle. from Galliyat, Western Himalaya, Pakistan. Pak J Bot. 2013, 45, 231.

117. Singh, J. K. Antihyperglycemic and anti-oxidant effect of Berberis aristata root extract and its role in regulating carbohydrate metabolism in diabetic rats. J Ethnopharmacol. 2009, 123, 22–26. https://doi.org/10.1016/j.jep.2009.02.038.

118. Koncic, M.Z.; Kremer, D.; Schuly, W.; Brantner, A.; Karlovic, K.; Kalodera, Z. Chemical differentiation of Berberis croatica vs B.vulgaris using HPLC fingerprinting. Croat Chem Acta. 2010, 83, 451–456.

119. Hanachi, P. Using HPLC to determination the composition and anti-oxidant activity of Berberis vulgaris. Eur J Sci Res. 2009, 29, 47–54.

120. Ruiz, A.; Hermosí-Gutiérrez, I.; Mardones, C.; Vergara, C.; Herlitz, E.; Vega, M.; Dorau, C.; Winterhalter, P.; Von Baer, D. Polyphenols and anti-oxidant activity of Calafate (Berberis microphylla) fruits and other native berries from southern Chile. J Agric Food Chem. 2010, 58, 6081–6089. https://doi.org/10.1021/jf100173x.

121. Ghasemzadeh, A.; Ghasemzadeh, N. Flavonoids and phenolic acids: role and biochemical activity in plants and human. J Med Plant Res. 2011, 5, 6697–6703. https://doi.org/10.5897/JMPR11.1404.

122. Alamgeer, Ambreen Malik, U.; Haseeb, A.; Umme Habiba, H.; Mueen Ahmad, C. Traditional medicines of plant origin used for the treatment of inflammatory disorders in Pakistan: A review. J Tradit Chin Med. 2018, 38(4), 636-656.

123. Uttra, A.M.; Alamgeer, Shahzad, M.; Shabbir, A.; Jahan, S.; Bukhari, I.A.; Assiri, A.M. Ribes orientale: a novel therapeutic approach targeting rheumatoid arthritis with reference to pro-inflammatory cytokines, inflammatory enzymes and anti-inflammatory cytokines. J Ethnopharmacol. 2019, 237, 92–107. https://doi.org/10.1016/j.jep.2019.03.019.

124. Valerio, M.; Awad, A.B. b-Sitosterol down-regulates some pro-inflammatory signal transduction pathways by increasing the activity of tyrosine phosphatase SHP-1 in J774A. 1 murine macrophages. Int Immunopharmacol. 2011, 11, 1012–1017. https://doi.org/10.1016/j.intimp.2011.02.018.

125. Jain, H.; Dhingra, N.; Narsinghani, T.; Sharma, R. Insights into the mechanism of natural terpenoids as NF-jB inhibitors: an overview on their anticancer potential. Exp Oncol. 2016, 38, 158–168.

126. Reed, G.W.; Leung, K.; Rossetti, R.G.; Vanbuskirk, S.; Sharp, J.T.; Zurier, R.B. Treatment of rheumatoid arthritis with marine and botanical oils: an 18-month, randomized, and double-blind trial. Evid Based Complement Altern Med. 2014, 2014, 857456. https://doi.org/10.1155/2014/857456.

127. Peng, W.; Wang, L.; Qiu, X.; Jiang, Y.; Han, T.; Pan, L.; Jia, X.; Qin, L.; Zheng, C. Therapeutic effects of Caragana pruinosa Kom. roots extract on type II collagen-induced arthritis in rats. J Ethnopharmacol. 2016, 191, 1–8. https://doi.org/10.1016/j.jep.2016.06.028.

128. Zhang, Q.; Peng, W.; Wei, S.; Wei, D.; Li, R.; Liu, J.; Peng, L.; Yang, S.; Gao, Y.; Wu, C.; Pu, X. Guizhi-ShaoyaoZhimu decoction possesses antiarthritic effects on type II collageninduced arthritis in rats via suppression of inflammatory reactions, inhibition of invasion & migration and induction of apoptosis in synovial fibroblasts. Biomed Pharmacother. 2019, 118, 109367. https://doi.org/10.1016/j.biopha.2019.109367.

129. Adnan, M.; Jan, S.; Mussarat, S.; Tariq, A.; Begum, S.; Afroz, A.; Shinwari, Z. A review on ethnobotany, phytochemistry and pharmacology of plant genus CarallumaR. Br. J. Pharm. Pharmacol. 2014, 66, 1351–1368. https://doi.org/10.1111/ jphp.12265.

130. Bin-Jumah, M.N. Antidiabetic effect of Monolluma quadrangula is mediated via modulation of glucose metabolizing enzymes, antioxidant defenses, and adiponectin in type 2 diabetic rats. Oxid. Med. Cell. Longev. 2019, 2019, 1–11. https://doi.org/ 10.1155/2019/6290143.

131. El-Shiekh, R.A.; El-Mekkawy, S.; Mouneir, S.M.; Hassan, A.; Abdel-Sattar, E. Therapeutic potential of russelioside B as anti-arthritic agent in Freund's adjuvant-induced arthritis in rats. J Ethnopharmacol. 2021, 270, 113779. https://doi.org/10.1007/s10787-019-00642-0.10.1016/j.jep.2021.113779.

132. Ray, S.; Nagaiah, K.; Khan, N.F. A study of anti-inflammatory activity of one novel C-21 steroidal glycoside known as carumbelloside-IV isolated from Caralluma umbellata. J. PharmaSciTech. 2012, 1, 12–14.

133. Seeka, C.; Prabpai, S.; Kongsaeree, P.; Tewtrakul, S.; Lhinhatrkool, T.; Sutthivaiyakit, S. Anti-inflammatory 12,20-epoxypregnane and 11,12-seco-Pregnane glycosides from the stems of Hoya kerrii. J. Nat. Prod. 2017, 80, 1714–1724. https://doi.org/ 10.1021/acs.jnatprod.6b00730.

134. Komarnytsky, S.; Ebora esposito, D.; Lexander Poulev, A.; Lya Raskin, I. Pregnane glycosides interfere with steroidogenic enzymes to down-regulate corticosteroid production in human adrenocortical H295R cells. J. Cell. Physiol. 2013, 228, 1120–1126. https://doi.org/10.1002/jcp.24262.

135. El-Hawary, S.S.; Mohammed, R.; Abouzid, S.; Ali, Y.; Elwekee, A. Anti-arthritic activity of 11-O-(40-O-methyl galloyl)-bergenin and Crassula capitella extract in rats. J. Pharm. Pharmacol. 2016, 68, 834–844. https://doi.org/10.1111/jphp.12566.

136. Sun, X.; Liu, Y.; Yang, Y.; Liu, X.; Xiang, D. Anti-arthritic efect of total saponins from Clematis henryi Oliv. on collagen-induced arthritis rats. Eur J Infamm. 2016, 14(2), 71–77. https://doi.org/10.1007/s10787-019-00642-0.10.1177/1721727X16644448

137. Pan, T.; Cheng, T.; Jia, Y.; Li, P.; Li, F. Anti-rheumatoid arthritis efects of traditional Chinese herb couple in adjuvant-induced arthritis in rats. J Ethnopharmacol. 2017, 205, 1–7. https://doi.org/10.1007/s10787-019-00642-0.10.1016/j.jep.2017.04.020.

138. Hasan, U.H.; Alamgeer, Shahzad, M.; Jahan, S.; Niazi, Z.R.; Bukhari, I.A.; Assiri, A.M.; Riaz, H. Inhibitory effects of Clematis orientalis aqueous ethanol extract and fractions on inflammatory markers in complete Freund's adjuvant-induced arthritis in Sprague-Dawley rats. Inflammopharmacology. 2019, 27(4), 781-797. https://doi.org/10.1007/s10787-019-00642-0.10.1007/s10787-018-0543-4.

139. Scott, D.L.; Wolfe, F.; Huizinga, T.W. Rheumatoid arthritis. Lancet. 2010, 376, 1094–1108. https://doi.org/10.1007/s10787-019-00642-0.10.1016/S0140-6736(10)60826-4.

140. Chaouche, T.M.; Haddouchi, F.; Ksouri, R.; Atik-Bekkara, F. Evaluation of antioxidant activity of hydromethanolic extracts of some medicinal species from South Algeria. J Chin Med Assoc. 2014, 77, 302–307. https://doi.org/10.1007/s10787-019-00642-0.10.1016/j.jcma.2014.01.009.

141. Jin, F. The pharmaceutical potential of compounds from Tasmanian Clematis species. 2012.

142. Han, W.; Xiong, Y.; Li, Y.; Fang, W.; Ma, Y.; Liu, L.; Li, F.; Zhu, X. Anti-arthritic efects of clematichinenoside (AR-6) on PI3 K/Akt signaling pathway and TNF-α associated with collagen-induced arthritis. Pharm Biol. 2013, 51(1), 13–22. https://doi.org/10.1007/s10787-019-00642-0.10.3109/13880209.2012.698287.

143. Bischof, S.C. Quercetin: potentials in the prevention and therapy of disease. Curr Opin Clin Nutr Metab Care. 2008, 11, 733–740. doi: 10.1097/MCO.0b013e32831394b8.

144. Khan, S.; Dwivedi, C.; Parmar, V.; Srinivasan, K.K.; Shirwaikar, A. Methanol extract of dried exudate of Commiphora mukul prevents bone resorption in ovariectomized rats. Pharm Biol. 2012, 50, 1330–1336. https://doi.org/10.1007/s10787-019-00642-0.10.3109/13880209.2012.675339.

145. Chandrasekar, R.; Chandrasekar, S. Natural herbal treatment for rheumatoid arthritis-A review. Int J Pharm Sci Res. 2017, 8, 368.

146. Nair, V.; Singh, S.; Gupta, Y.K. Evaluation of disease modifying activity of Coriandrum sativum in experimental models. Indian J Med Res. 2012, 135(2), 240-5.

147. Qiao, C.F.; Li, Q.W.; Dong, H.; Xu, L.S.; Wang, Z.T. Studies on chemical constituents of two plants from Costus. Zhongguo Yao Xue Hui. 2002, 27, 123–125.

148. Chandra, K.; Salman, A.S.; Mohd, A.; Sweety, R.; Ali, K.N. Protection against FCA induced oxidative stress induced DNA damage as a model of arthritis and In vitro anti-arthritic potential of costus speciosus rhizome extract. Inter J Pharma Phyto Res. 2015, 7, 383–389.

149. Henrotin, Y.; Malaise, M.; Wittoek, R.; de Vlam, K.; Brasseur, J.P.; Luyten, F.P.; Jiangang, Q.; Van den Berghe, M.; Uhoda, R.; Bentin, J.; De Vroey, T.; Erpicum, L.; Donneau, A.F.; Dierckxsens, Y. Bio-optimized Curcuma longa extract is efficient on knee osteoarthritis pain: a doubleblind multicenter randomized placebo controlled three-arm study. Arthritis Res Ther. 2019, 21(1), 179. https://doi.org/10.1007/s10787-019-00642-0.10.1186/s13075-019-1960-5.

150. Ratsch, C. The encyclopedia of psychoactive plants: Ethnopharmacology and its applications. Rochester, Park Street Press. 1998.

151. Gorsi, M.S.; Miraj, S. Ethnomedicinal survey of plants of Khanabad village and its allied areas, District Gilgit. Asian. J. Plant. Sci. 2002, 1, 604-615. https://doi.org/10.1007/s10787-019-00642-0.10.3923/ajps.2002.604.615

152. Uttra, A.M.; Alamgeer, S.M.; Shabbir, A; Jahan, S. Ephedra gerardiana aqueous ethanolic extract and fractions attenuate Freund Complete Adjuvant induced arthritis in Sprague Dawley rats by downregulating PGE2, COX2, IL-1β, IL-6, TNF-α, NF-kB and upregulating IL-4 and IL-10. J Ethnopharmacol. 2018, 224, 482-496. https://doi.org/10.1007/s10787-019-00642-0.10.1016/j.jep.2018.06.018.

153. Babu, N.P.; Pandikumar, P.; Ignacimuthu, S. Lysosomal membrane stabilization and anti-inflammatory activity of Clerodendrum phlomidis L.f., a traditional medicinal plant. J. Ethnopharmacol. 2011, 135, 779-85. https://doi.org/10.1007/s10787-019-00642-0.10.1016/j.jep.2011.04.028.

154. Kyei, S.; Koffuor, G.A.; Boampong, J.N. Antiarthritic effect of aqueous and ethanolic leaf extracts of Pistia stratiotes in adjuvant-induced arthritis in Sprague-Dawley rats. J. Exp. Pharmacol. 2012, 4, 41-51. https://doi.org/10.1007/s10787-019-00642-0.10.2147/JEP.S29792.

155. Kadam, P.; Bodhankar, S.L. Antiarthritic activity of ethanolic seed extracts of Diplocyclos palmatus (L) C. Jeffrey in experimental animals. Der. Pharm. Lett. 2013, 5, 233-242.

156. Chakraborty, M.; Bhattacharya, S.; Bhattacharjee, P.; Das, R.; Mishra, R. Prevention of the progression of adjuvant induced arthritis by oral supplementation of Indian fresh water mussel (Lamellidens marginalis) aqueous extract in experimental rats. J. Ethnopharmacol. 2010, 132, 316-320. https://doi.org/10.1007/s10787-019-00642-0.10.1016/j.jep.2010.08.036.

157. Badami, S.; Gupta, M.K.; Suresh, B. Antioxidant activity of ethanolic extract of Striga orobanchioides. J. Ethnopharmacol. 2003, 85, 227-230. https://doi.org/10.1007/s10787-019-00642-0.10.1016/s0378-8741(03)00021-7.

158. Aiyegoro, O.A.; Okohm, A.I. Preliminary phytochemical screening and in vitro antioxidant activities of the aqueous extract of Helichrysum longifolium DC. BMC Complement. Altern. Med. 2010, 10, 21. https://doi.org/10.1007/s10787-019-00642-0.10.1186/1472-6882-10-21.

159. Kumaraswamy, M.V.; Satish, S. Antioxidant and Anti-Lipoxygenase activity of Thespesia lampas Dalz & Gibs. Adv. Biol. Res. 2008, 2, 56-59.

160. Alonso-Castro, A.J.; Zapata-Morales, J.R.; Arana-Argáez, V.; Torres-Romero, J.C.; Ramírez-Villanueva, E.; Pérez-Medina, S.E.; Ramírez-Morales, M.A.; Juárez-Méndez, M.A.; Infante-Barrios, Y.P.; Martínez-Gutiérrez, F.; Carranza-Álvarez, C.; Isiordia-Espinoza, M.A.; Flores-Santos, A. Pharmacological and toxicological study of a chemical-standardized ethanol extract of the branches and leaves from Eysenhardtia polystachya (Ortega) Sarg. (Fabaceae). J Ethnopharmacol. 2018, 224, 314–322. https://doi.org/10.1007/s10787-019-00642-0.10.1016/j.jep.2018.06.016.

161. Pablo-Perez, S.S.; Parada-Cruz, B.; Barbier, O.C.; Meléndez-Camargo, M.E. The ethanolic extract of Eysenhardtia polystachya (Ort.)Sarg. bark and its fractions delay the progression of rheumatoid arthritis and show antinociceptive activity in murine models. Iran J Pharm Res. 2018, 17, 236-48.

162. Pan, F.; Chen, L.; Jiang, Y.; Xiong, L.; Min, L.; Xie, J.; Qi, J.; Xiao, H.; Chen, Y.; De Hoop, C.F. Bio-based UV protective films prepared with polylactic acid (PLA) and Phoebe zhennan extractives. Int J Biol Macromol. 2018, 119, 582–587. https://doi.org/10.1007/s10787-019-00642-0.10.1016/j.ijbiomac.2018.07.189.

163. Huang, R.Y.; Chu, Y.L.; Jiang, Z.B.; Chen, X.M.; Zhang, X.; Zeng, X. Glycyrrhizin suppresses lung adenocarcinoma cell growth through inhibition of thromboxane synthase. Cell Physiol Biochem. 2014, 33, 375–388. https://doi.org/10.1007/s10787-019-00642-0.10.1159/000356677.

164. 169 Gao, S.; Wang, Q.; Tian, X.H.; Li, H.L.; Shen, Y.H.; Xu, X.K.; Wu, G.Z.; Hu, Z.L.; Zhang, W.D. Total sesquiterpene lactones prepared from Inula helenium L. has potentials in prevention and therapy of rheumatoid arthritis. J Ethnopharmacol. 2017, 196, 39–46. https://doi.org/10.1007/s10787-019-00642-0.10.1016/j.jep.2016.12.020.

165. Chun, J.; Choi, R.J.; Khan, S.; Lee, D.S.; Kim, Y.C.; Nam, Y.J.; Lee, D.U.; Kim, Y.S. Alantolactone suppresses inducible nitric oxide synthase and cyclooxygenase-2 expression by down-regulating NFjB, MAPK and AP-1 via the MyD88 signaling pathway in LPS-activated RAW 264.7 cells. Int Immunopharmacol 2012, 14, 375–383. https://doi.org/10.1007/s10787-019-00642-0.10.1016/j.intimp.2012.08.011.

166. Younis, T.; Khan, M.R.; Sajid, M.; Majid, M.; Zahra, Z.; Shah, N.A. Fraxinus xanthoxyloides leaves reduced the level of inflammatory mediators during in vitro and in vivo studies. BMC Complement Alt Med. 2016, 16, 230. https://doi.org/10.1007/s10787-019-00642-0.10.1186/s12906-016-1189-7.

167. Majid, M.; Nasir, B.; Zahra, S.S.; Khan, M.R.; Mirza, B.; Haq, I.U. Ipomoea batatas L. Lam. ameliorates acute and chronic inflammations by suppressing inflammatory mediators, a comprehensive exploration using in vitro and in vivo models. BMC Complement Altern Med. 2018, 18, 216. https://doi.org/10.1007/s10787-019-00642-0.10.1186/s12906-018-2279-5.

168. Montserrat-De La Paz, S.; García-Giménez, M.D.; Ángel-Martín, M.; Pérez-Camino, M.C.; Fernández Arche, A. Longchain fatty alcohols from evening primrose oil inhibit the inflammatory response in murine peritoneal macrophages. J Ethnopharmacol. 2014, 151, 131–136. doi: 10.1016/j.jep.2013.10.012.

169. Voukeng, I.K.; Beng, V.P.; Kuete, V. Antibacterial activity of six medicinal Cameroonian plants against Gram-positive and Gram-negative multidrug resistant phenotypes. BMC Complement Altern Med. 2016, 16, 388. https://doi.org/10.1007/s10787-019-00642-0.10.1186/s12906-016-1371-y.

170. Adeniyi, A.; Asase, A.; Ekpe, P.; Asitoakor, B.; Adu-Gyamfi, A.; Avekor, P. Ethnobotanical study of medicinal plants from Ghana; confirmation of ethnobotanical uses, and review of biological, and toxicological studies on medicinal plants used in Apra Hills Sacred Grove. J Herb Med. 2018, 14, 76–87. doi: 10.1016/j.hermed.2018.02.001

171. Soelberg, J.; Asase, A.; Akwetey, G.; Jäger, A.K. Historical versus contemporary medicinal plant uses in Ghana. J Ethnopharmacol. 2015, 160, 109–132. https://doi.org/10.1007/s10787-019-00642-0.10.1016/j.jep.2014.11.036.

172. Tseuguem, P.P.; Ngangoum, D.A.M.; Pouadjeu, J.M.; Piégang, B.N.; Sando, Z.; Kolber, B.J.; Tidgewell, K.J.; Nguelefack, T.B. Aqueous and methanol extracts of Paullinia pinnata L. (Sapindaceae) improve inflammation, pain and histological features in CFA-induced mono arthritis: evidence from in vivo and in vitro studies. J Ethnopharmacol. 2019, 236, 183–195. https://doi.org/10.1007/s10787-019-00642-0.10.1016/j.jep.2019.02.048.

173. Mani, A.; Vasanthi, C.; Gopal, V.; Chellathai, D. Role of phyto-stabilised silver nanoparticles in suppressing adjuvant induced arthritis in rats. Int Immunopharmacol. 2016, 41, 17–23. https://doi.org/10.1007/s10787-019-00642-0.10.1016/j.intimp.2016.10.013.

174. Ch, M.I.; Ahmed, F.; Maqbool, M.; Hussain, T. Ethnomedicinal inventory of fora of maradori valley, district forward Khahuta, Azad Kashmir, Pakistan. Am J Res Commun. 2013, 1, 239–261.

175. Saleem, A.; Saleem, M.; Akhtar, M.F.; Sharif, A.; Javaid, Z.; Sohail, K. In vitro and in vivo anti-arthritic evaluation of Polystichum braunii to validate its folkloric claim. Pak J Pharm Sci. 2019a, 32, 1167–1173.

176. Saleem, A.; Saleem, M.; Akhtar, M.F.; Shahzad, M.; Jahan, S. Polystichum braunii extracts inhibit Complete Freund's adjuvant-induced arthritis via upregulation of I-κB, IL-4, and IL-10, downregulation of COX-2, PGE2, IL-1β, IL-6, NF-κB, and TNF-α, and subsiding oxidative stress. Inflammopharmacology. 2020, 28(6), 1633-1648. https://doi.org/10.1007/s10787-019-00642-0.10.1007/s10787-020-00688-5.

177. Shabbir, A.; Batool, S.A.; Basheer, M.I.; Shahzad, M.; Sultana, K.; Tareen, R.B.; Iqbal, J. Ziziphora clinopodioides ameliorated rheumatoid arthritis and infammatory paw edema in diferent models of acute and chronic infammation. Biomed Pharmacother. 2018, 97, 1710–1721. https://doi.org/10.1007/s10787-019-00642-0.10.1016/j.biopha.2017.11.118.

178. Saleem, A.; Saleem, M.; Akhtar, M.F.; Shahzad, M.; Jahan, S. Moringa rivae leaf extracts attenuate Complete Freund’s adjuvantinduced arthritis in Wistar rats via modulation of infammatory and oxidative stress biomarkers. Infammopharmacology. 2020a, 28, 139–151. https://doi.org/10.1007/s10787-019-00642-0.10.1007/s10787-019-00596-3.

179. Kong, R.; Kang, O.H.; Seo, Y.S.; Zhou, T.; Kim, S.A.; Shin, D.W.; Kwon, D.Y. MAPKs and NF-κB pathway inhibitory efect of bisdemethoxycurcumin on phorbol-12-myristate-13-acetate and A23187-induced infammation in human mast cells. Mol Med Rep. 2018, 17, 630–635. https://doi.org/10.1007/s10787-019-00642-0.10.3892/mmr.2017.7852.

180. Geng, Q.; Wei, Q.; Wang, S.; Qi, H.; Zhu, Q.; Liu, X.; Shi, X.; Wen, S. Physcion 8-O-β-glucopyranoside extracted from Polygonum cuspidatum exhibits anti-proliferative and anti-infammatory efects on MH7A rheumatoid arthritis-derived fbroblastlike synoviocytes through the TGF-β/MAPK pathway. Int J Mol Med. 2018, 42, 745–754. https://doi.org/10.1007/s10787-019-00642-0.10.3892/ijmm.2018.3649

181. Perumal, S.S.; Ekambaram, S.P.; Dhanam, T. In vivo antiarthritic activity of the ethanol extracts of stem bark and seeds of Calophyllum inophyllum in Freund’s complete adjuvant induced arthritis. Pharm Biol. 2017, 55, 1330–1336. https://doi.org/10.1007/s10787-019-00642-0.10.1080/13880209.2016.1226346.

182. Mirończuk-Chodakowska, I.; Witkowska, A.M.; Zujko, M.E. Endogenous non-enzymatic antioxidants in the human body. Adv Med Sci. 2018, 63, 68–78. https://doi.org/10.1007/s10787-019-00642-0.10.1016/j.advms.2017.05.005.

183. Foyet, H.S.; Tsala, D.E.; Bodo, J.Z.E.; Carine, A.N.; Heroyne, L.T.; Oben, E.K. Anti-infammatory and anti-arthritic activity of a methanol extract from Vitellaria paradoxa stem bark. Pharmacognosy Res. 2015, 7, 367–377. doi: 10.4103/0974-8490.159569.

184. Saleem, A.; Saleem, M.; Akhtar, M.F. Antioxidant, anti-infammatory and antiarthritic potential of Moringa oleifera Lam: an ethnomedicinal plant of Moringaceae family. S Afr J Bot. 2020b, 128, 246–256. https://doi.org/10.1007/s10787-019-00642-0.10.1016/j.sajb.2019.11.023

185. Shukla, M.; Gupta, K.; Rasheed, Z.; Khan, K.A.; Haqqi, T.M. Consumption of hydrolyzable tannins-rich pomegranate ex-tract suppresses inflammation and joint damage in rheumatoid arthritis. Nutrition. 2008, 24, 733–743. https://doi.org/10.1007/s10787-019-00642-0.10.1016/j.nut.2008.03.013.

186. Von Linsingen, R.; Gelmini, G.F.; Bicalho, M.D.G.; De Carvalho, N.S. MICA-129 A/ G dimorphism, its relation to soluble mica plasma level and spontaneous preterm birth: a case-control study. J Reprod Immunol. 2018, 129, 9–14. https://doi.org/10.1007/s10787-019-00642-0.10.1016/j.jri.2018.07.002.

187. Kendir, G.; Köroğlu, A. In vitro anti-oxidant effect of the leaf and branch extracts of Ribes L. species in Turkey. Int. J. Pharm. Sci. Res. 2015, 2, 108. https://doi.org/10.1007/s10787-019-00642-0.10.15344/2394-1502/2015/108.

188. Khan, S.W.; Khatoon, S. Ethnobotanical studies on useful trees and shrubs of Haramosh and Bugrote valleys, in Gilgit Northern Areas of Pakistan. Pakistan J. Bot. 2007, 39, 699–710.

189. Abotsi, W.K.M.; Ainooson, G.K.; Woode, E. Anti-inflammatory and anti-oxidant effects of an ethanolic extract of the aerial parts of Hilleria latifolia (Lam.) H. Walt. (Phytolaccaceae). Afr. J. Tradit. Complement. Altern. Med. 2012, 9, 138‐152. https://doi.org/10.1007/s10787-019-00642-0.10.4314/ajtcam.v9i1.19.

190. Daniel, D.; Dluya, T. In vitro biochemical assessments of methanol stem bark extracts of Ficus sycomorus plant. Jordan J. Biol. Sci. 2016, 9, 63–68. https://doi.org/10.1007/s10787-019-00642-0.10.12816/0027009

191. Rosas, E.C.; Correa, L.B.; Pádua, Tde A.; Costa, T.E.; Mazzei, J.L.; Heringer, A.P.; Bizarro, C.A.; Kaplan, M.A.; Figueiredo, M.R.; Henriques, M.G. Anti-inflammatory effect of Schinus terebinthifolius raddi hydroalcoholic extract on neutrophil migration in zymosan-induced arthritis. J Ethnopharmacol. 2015, 175, 490–498. https://doi.org/10.1007/s10787-019-00642-0.10.1016/j.jep.2015.10.014.

192. Correa, L.B.; Pádua, T.A.; Seito, L.N.; Costa, T.E.; Silva, M.A.; Candéa, A.L.; Rosas, E.C.; Henriques, M.G. Anti-inflammatory effect of methyl gallate on experimental arthritis: inhibition of neutrophil recruitment, production of inflammatory mediators, and activation of macrophages. J Nat Prod. 2016, 79, 1554–1566. https://doi.org/10.1007/s10787-019-00642-0.10.1021/acs.jnatprod.5b01115.

193. Rocha, P.D.S.D.; Campos, J.F.; Nunes-Souza, V.; Vieira, M.D.C.; Boleti, A.P.A.; Rabelo, L.A.; Dos Santos, E.L.; de Picoli Souza, K. Antioxidant and protective effects of Schinus terebinthifolius Raddi against Doxorubicin-induced toxicity. Appl Biochem Biotechnol. 2018, 184(3), 869-884. https://doi.org/10.1007/s10787-019-00642-0.10.1007/s12010-017-2589-y.

194. Plaza, A.; Perrone, A.; Balestrieri, C.; Balestrieri, L.; Bifulco, G.; Carbone, V.; Hamed, A.; Piacente, S. New antiproliferative 14 , 15-secopregnane glycosides from. Solenostemma argel. 2005a, 61, 7470–7480. https://doi.org/10.1016/j.tet.2005.05.048.

195. Innocenti, G.; Dall’Acqua, S.; Minesso, P.; Budriesi, R.; Micucci, M.; Chiarini, A. Evaluation of muscarinic M3-receptor antagonism of Solenostemma argel leaves. Planta Med. 2010, 76, 634. https://doi.org/10.1055/s-0030-1264932.

196. Al-Jaber, N.A.; Awaad, A.S.; Moses, J.E. Review on some antioxidant plants growing in Arab world. J. Saudi Chem. Soc. 2011, 15, 293–307. https://doi.org/10.1016/j. jscs.2011.07.004.

197. Ibrahim, E.; Gaafar, A.; Salama, D.Z.; El-Baz, F. Anti-inflammatory and antioxidant activity of Solenostemma argel extract. IJPPR. 2015, 7, 635–641.

198. Angela, P.; Alberto, P.; Arafa, H.; Cosimo, P.; Sonia, P. Solenostemma argel: a rich source of very unusual pregnane and 14,15- secopregnane glycosides with antiproliferative activity. Curr. Org. Chem. 2008, 12 (18), 1648–1660. https://doi.org/10.1007/s10787-019-00642-0.10.2174/138527208786786282.

199. Demmak, R.; Bordage, S.; Bensegueni, A.; Boutaghane, N.; Hennebelle, T.; Mokrani, E.; Sahpaz, S. Chemical constituents from Solenostemma argel and their cholinesterase inhibitory activity. Nat. Prod. Sci. 2019, 25, 115. https://doi.org/10.20307/ nps.2019.25.2.115.

200. Navarro, M.; Arnaez, E.; Moreira, I.; Hurtado, A.; Monge, D.; Monagas, M. Polyphenolic composition and antioxidant activity of Uncaria tomentosa commercial bark products. Antioxidants. 2019, 8, 339. https://doi.org/10.1007/s10787-019-00642-0.10.3390/antiox8090339.

201. Sordi, R.; Castro, S.N.; Lera, A.T.; Irene, M.N.; Farinazzo, M. de M.; Sette, C.; Cubero, D. de I. G.; Baccarin, A.L. de C.; Giglio, A. del. Randomized, doubleblind, placebo-controlled phase II clinical trial on the use of Uncaria tomentosa (Cat’s Claw) for aromatase inhibitor-induced arthralgia: a pilot study. J Nat Remed. 2019, 19, 24–31. https://doi.org/10.1007/s10787-019-00642-0.10.18311/jnr/2019/22867

202. Mur, E.; Hartig, F.; Eibl, G.; Schirmer, M. Randomized double blind trial of an extract from the pentacyclic alkaloid-chemotype of uncaria tomentosa for the treatment of rheumatoid arthritis. J Rheumatol. 2002, 29, 678–681.

203. Singh, S.; Singh, T.G.; Mahajan, K.; Dhiman, S. Medicinal plants used against various inflammatory biomarkers for the management of rheumatoid arthritis. J Pharm Pharmacol. 2020, 72(10), 1306-1327. https://doi.org/10.1007/s10787-019-00642-0.10.1111/jphp.13326.

204. Wang, H.; Jiang, Z.; Pang, Z.; Zhou, T.; Gu, Y. Acacetin alleviates inflammation and matrix degradation in nucleus pulposus cells and ameliorates intervertebral disc degeneration in vivo. Drug Des Devel Ther. 2020, 14, 4801-4813. https://doi.org/10.1007/s10787-019-00642-0.10.2147/DDDT.S274812.

205. Gao, F.; Liu, X.; Shen, Z.Y.; Jia, X.H.; He, H.; Gao, J.; Wu, J.H.; Jiang, C.H.; Zhou, H.; Wang, Y.P. Andrographolide sulfonate attenuates acute lung injury by reducing expression of myeloperoxidase and neutrophil-derived proteases in mice. Front. Physiol. 2018, 9, 939. https://doi.org/10.1007/s10787-019-00642-0.10.3389/fphys.2018.00939.

206. Peng, S.; Gao, J.; Liu, W.; Jiang, C.; Yang, X.; Sun, Y.; Guo, W.; Xu, Q. Andrographolide ameliorates OVA-induced lung injury in mice by suppressing ROS-mediated NF-κB signaling and NLRP3 inflammasome activation. Oncotarget 2016, 7, 80262–80274. https://doi.org/10.1007/s10787-019-00642-0.10.18632/oncotarget.12918.

207. Chen, H.W.; Huang, C.S.; Li, C.C.; Lin, A.H.; Huang, Y.J.; Wang, T.S.; Yao, H.T.; Lii, C. K. Bioavailability of andrographolide and protection against carbon tetrachloride-induced oxidative damage in rats. Toxicol. Appl. Pharmacol. 2014, 280, 1–9. https://doi.org/10.1007/s10787-019-00642-0.10.1016/j.taap.2014.07.024.

208. Li Z.; Tan J.; Wang L.; Li Q. Andrographolide benefits rheumatoid arthritis via inhibiting MAPK pathways. Inflammation 2017, 40, 1599–1605. https://doi.org/10.1007/s10787-019-00642-0.10.1007/s10753-017-0600-y.

209. Luo, S.; Li, H.; Liu, J.; Xie, X.; Wan, Z.; Wang, Y.; Zhao, Z.; Wu, X.; Li, X.; Yang, M.; Li, X. Andrographolide ameliorates oxidative stress, inflammation and histological outcome in complete Freund's adjuvant-induced arthritis. Chem Biol Interact. 2020, 319, 108984. https://doi.org/10.1007/s10787-019-00642-0.10.1016/j.cbi.2020.108984.

210. Suh, N.J.; Shim, C.K.; Lee, M.H.; Kim, S.K.; Chang, I.M. Pharmacokinetic study of an iridoid glucoside: aucubin. Pharm Res. 1991,8(8),1059-63. https://doi.org/10.1007/s10787-019-00642-0.10.1023/a:1015821527621.

211. Jin, H.; Wang, Q.; Wu, J.; Han, X.; Qian, T.; Zhang, Z.; Wang, J.; Pan, X.; Wu, A.; Wang, X. Baicalein inhibits the IL-1β-induced inflammatory response in nucleus pulposus cells and attenuates disc degeneration In vivo. Inflammation. 2019, 42(3), 1032-1044. https://doi.org/10.1007/s10787-019-00642-0.10.1007/s10753-019-00965-8.

212. Wang, X.H.; Jiang, S.M.; Sun, Q.W. Effects of berberine on human rheumatoid arthritis fibroblast-like synoviocytes. Exp Biol Med (Maywood.) 2011, 236, 859–866. https://doi.org/10.1007/s10787-019-00642-0.10.1258/ebm.2011.010366.

213. Ren, Y.; Lu, L.; Guo, T.B.; Qiu, J.; Yang, Y.; Liu, A.; Zhang, J.Z. Novel immunomodulatory properties of berbamine through selective down-regulation of STAT4 and action of IFN gamma in experimental autoimmune encephalomyelitis. J Immunol. 2008, 181, 1491–1498. https://doi.org/10.1007/s10787-019-00642-0.10.4049/jimmunol.181.2.1491.

214. Shirwaikar, A.; Shirwaikar, A.; Rajendran, K.; Punitha, I.S.R. In vitro anti-oxidant studies on the benzyl tetra isoquinoline alkaloid berberine. Biol Pharm Bull. 2006, 29, 1906–1910. https://doi.org/10.1007/s10787-019-00642-0.10.1248/bpb.29.1906.

215. Xie, C.; Ma, H.; Shi, Y.; Li, J.; Wu, H.; Wang, B.; Shao, Z.; Huang, C.; Chen, J.; Sun, L.; Zhou, Y.; Tian, N.; Wu, Y.; Gao, W.; Wu, A.; Wang, X.; Zhang, X. Cardamonin protects nucleus pulposus cells against IL-1β-induced inflammation and catabolism via Nrf2/NF-κB axis. Food Funct. 2021, 12(6), 2703-2714. https://doi.org/10.1007/s10787-019-00642-0.10.1039/d0fo03353g.

216. Morita, T. Celastrol: a new therapeutic potential of traditional Chinese medicine. Am. J. Hypertens. 2010, 23(8), 821. https://doi.org/10.1007/s10787-019-00642-0.10.1038/ajh.2010.87.

217. Pinna, G.F.; Fiorucci, M.; Reimund, J.M.; Taquet, N.; Arondel, Y.; Muller, C.D. Celastrol inhibits pro-inflammatory cytokine secretion in Crohn’s disease biopsies, Biochem. Biophys. Res. Commun. 2004, 322(3), 778–786. https://doi.org/10.1007/s10787-019-00642-0.10.1016/j.bbrc.2004.07.186.

218. Nabekura, T.; Hiroi, T.; Kawasaki, T.; Uwai, Y. Effects of natural nuclear factorkappa B inhibitors on anticancer drug efflux transporter human Pglycoprotein. Biomed. Pharmacother. 2015, 70, 140–145. https://doi.org/10.1007/s10787-019-00642-0.10.1016/j.biopha.2015.01.007.

219. Chen, J.; Xuan, J.; Gu, Y.T.; Shi, K.S.; Xie, J.J.; Chen, J.X.; Zheng, Z.M.; Chen, Y.; Chen, X.B.; Wu, Y.S.; Zhang, X.L.; Wang, X.Y. Celastrol reduces IL-1β induced matrix catabolism, oxidative stress and inflammation in human nucleus pulposus cells and attenuates rat intervertebral disc degeneration in vivo. Biomed Pharmacother. 2017, 91, 208-219. https://doi.org/10.1007/s10787-019-00642-0. 10.1016/j.biopha.2017.04.093.

220. Muravyova D. A. Medicinal plants. Great Medical Encyclopedia: in 30 volumes, ch. ed. B.V. Petrovsky. — 3rd ed. - M.: Soviet Encyclopedia, 1980, 12: Cryosurgery, Lenegr., 536 p.

221. Alam, M.A.; Subhan, N.; Hossain, H.; Hossain, M.; Reza, H.M.; Rahman, M.M.; Ullah, M.O. Hydroxycinnamic acid derivatives: a potential class of natural compounds for the management of lipid metabolism and obesity. Nutr. Metab. 2016, 13, 27. https://doi.org/10.1007/s10787-019-00642-0.10.1186/s12986-016-0080-3.

222. Li, K.; Li, Y.; Ma, Z.; Zhao, J. Crocin exerts anti-inflammatory and anti-catabolic effects on rat intervertebral discs by suppressing the activation of JNK. Int J Mol Med. 2015, 36(5), 1291-9. doi: 10.3892/ijmm.2015.2359.

223. Zhu, L.; Zhang, Z.; Xia, N.; Zhang, W.; Wei, Y.; Huang, J.; Ren, Z.; Meng, F.; Yang, L. Anti-arthritic activity of ferulic acid in complete Freund's adjuvant (CFA)-induced arthritis in rats: JAK2 inhibition. Inflammopharmacology. 2020, 28(2), 463-473. https://doi.org/10.1007/s10787-019-00642-0.

224. Lee, J.H.; Kim, G.H. Evaluation of antioxidant and inhibitory activities for different subclasses flavonoids on enzymes for rheumatoid arthritis. J. Food Sci. 2010, 75, 212–217. https://doi.org/10.1111/j.1750-3841.2010.01755.x.

225. Gautam, R.; Jachak, S.M. Recent developments in anti-inflammatory natural products. Med. Res. Rev. 2009, 29, 767–820. https://doi.org/10.1002/med.20156.

226. Patel, K.; Jain, A.; Patel, D.K. Medicinal significance, pharmacological activities, and analytical aspects of anthocyanidins ‘delphinidin’ : a concise report. J. Acute Dis. 2013, 2, 169–178. https://doi.org/10.1016/S2221-6189(13)60123-7.

227. Sarkar, A.; Tripathi, V.D.; Sahu, R.K. Anti-inflammatory and anti-arthritis activity of flavonoids fractions isolated from Centipeda minima leaves extracts in rats. Clin. Exp. Pharmacol. 2017, 7(2), 1–8. https://doi.org/10.4172/2161-1459.1000231.

228. Ambriz-P´erez, D.L.; Leyva-Lopez, ´ N.; Gutierrez-Grijalva, E.P.; Heredia, J.B.; Yildiz, F. Phenolic compounds: natural alternative in inflammation treatment. A Review. Cogent Food Agric. 2016, 2(1), 1–14. https://doi.org/10.1080/ 23311932.2015.1131412.

229. Abdel Motaal, A.; Ezzat, S.M.; Tadros, M.G.; El-Askary, H.I. In vivo antiinflammatory activity of caffeoylquinic acid derivatives from Solidago virgaurea in rats. Pharm. Biol. 2016, 54(12), 2864–2870. https://doi.org/10.1080/ 13880209.2016.1190381.

230. Liang, N.; Kitts, D.D. Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions. Nutrients. 2015, 8(1). https://doi.org/10.3390/ nu8010016.

231. Niazi, J.; Sachdeva, R.; Bansal, Y.; Gupta, V.; Kaur, N. Anti-inflammatory and antinociceptive activity of vanillin. Drug Des. Dev. Ther. 2014, 5(2), 145. https://doi.org/ 10.4103/2394-2002.139630.

232. Ounaissia, K.; Pertuit, D.; Mitaine-Offer, A.C.; Miyamoto, T.; Tanaka, C.; Delemasure, S.; Dutartre, P.; Smati, D.; Lacaille-Dubois, M.A. New pregnane and phenolic glycosides from Solenostemma argel. Fitoterapia. 2016, 114, 98–104. https://doi.org/ 10.1016/j.fitote.2016.08.002.

233. Innocenti, G.; Dall’Acqua, S.; Sosa, S.; Altinier, G.; Della Loggia, R. Topical antiinflammatory activity of Solenostemma argel leaves. J. Ethnopharmacol. 2005, 102(2), 307–310. https://doi.org/10.1016/j.jep.2005.06.007.

234. Perrone, A.; Plaza, A.; Ercolino, S.F.; Hamed, A.I.; Parente, L.; Pizza, C.; Piacente, S. 14,15-Secopregnane derivatives from the leaves of Solenostemma argel. J. Nat. Prod. 2006, 69(1), 50–54. https://doi.org/10.1021/np050263c.

235. Liu, B.; Xu, C.; Wu, X.; Liu, F.; Du, Y.; Sun, J.; Tao, J.; Dong, J. Icariin exerts an antidepressant effect in an unpredictable chronic mild stress model of depression in rats and is associated with the regulation of hippocampal neuroinflammation. Neuroscience. 2015, 294, 193–205. https://doi.org/10.1016/j.neuroscience.2015.02.053.

236. Yang, A.; Yu, C.; Lu, Q.; Li, H.; Li, Z.; He, C. Mechanism of action of icariin in bone marrow mesenchymal stem cells. Stem Cells International. 2019, 2019, 5747298. https://doi.org/10.1155/2019/5747298.

237. Qin, S.; Zhou, W.; Liu, S.; Chen, P.; Wu, H. Icariin stimulates the proliferation of rat bone mesenchymal stem cells via ERK and p38 MAPK signaling. Int J Clin Exp Med. 2015, 8(5), 7125–7133.

238. Yang, P.; Guan, Y.Q.; Li, Y.L.; Zhang, L.; Zhang, L.; Li, L. Icariin promotes cell proliferation and regulates gene expression in human neural stem cells in vitro. Mol Med Rep. 2016, 14(2), 1316–1322. https://doi.org/10.3892/mmr.2016.5377.

239. Chen, S.; Deng, X.; Ma, K.; Zhao, L.; Huang, D.; Li, Z.; Shao, Z. Icariin improves the viability and function of cryopreserved human nucleus pulposus-derived mesenchymal stem cells. Oxidative Medicine and Cellular Longevity. 2018, 2018, 3459612. https://doi.org/10.1155/2018/3459612.

240. Hua, W.; Li, S.; Luo, R.; Wu, X.; Zhang, Y.; Liao, Z.; Song, Y.; Wang, K.; Zhao, K.; Yang, S.; Yang, C. Icariin protects human nucleus pulposus cells from hydrogen peroxide-induced mitochondria-mediated apoptosis by activating nuclear factor erythroid 2-related factor 2. Biochim Biophys Acta Mol Basis Dis. 2020, 1866(1), 165575. https://doi.org/10.1016/j.bbadis.2019.165575.

241. Hua, W.; Zhang, Y.; Wu, X.; Kang, L.; Tu, J.; Zhao, K.; Li, S.; Wang, K.; Song, Y.; Luo, R.; Shao, Z.; Yang, S.; Yang, C. Icariin attenuates Interleukin-1β-induced inflammatory response in human nucleus pulposus cells. Curr Pharm Des. 2018, 23(39), 6071–6078. https://doi.org/10.2174/1381612823666170615112158.

242. Wu, H.; Zha, Z.G.; Yao, P. Experimental study of icariin in inducing bone marrow mesenchymal stem cell differentiation. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2010, 30(4), 410–415.

243. Su, Y.S.; Fan, Z.X.; Xiao, S.E.; Lin, B.J.; Miao, Y.; Hu, Z.Q.; Liu, H. Icariin promotes mouse hair follicle growth by increasing insulin-like growth factor 1 expression in dermal papillary cells. Clin Exp Dermatol. 2017, 42(3), 287–294. https://doi.org/10.1111/ced.13043.

244. Zhang, Z.; Qin, F.; Feng, Y.; Zhang, S.; Xie, C.; Huang, H.; Sang, C.; Hu, S.; Jiao, F.; Jiang, J.; Qin, Y. Icariin regulates stem cell migration for endogenous repair of intervertebral disc degeneration by increasing the expression of chemotactic cytokines. BMC Complement Med Ther. 2022, 22, 63. https://doi.org/10.1186/s12906-022-03544-x.

245. Choi, E.S.; Yoon, J.J.; Han, B.H.; Jeong, D.H.; Lee, Y.J.; Kang, D.G.; Lee, H.S. Ligustilide attenuates vascular inflammation and activates Nrf2/HO-1 induction and, NO synthesis in HUVECs, Phytomedicine. 2018, 38, 12–23. https://doi.org/10.1016/j.phymed.2017.09.022.

246. Su, Y.W.; Chiou, W.F.; Chao, S.H.; Lee, M.H.; Chen, C.C.; Tsai, Y.C. Ligustilide prevents LPS-induced iNOS expression in RAW 264.7 macrophages by preventing ROS production and down-regulating the MAPK, NF-κB and AP-1 signaling pathways, Int. Immunopharmacol. 2011, 11(9), 1166–1172. https://doi.org/10.1016/j.intimp.2011.03.014.

247. Wang, K.; Chen, T.; Ying, X.; Zhang, Z.; Shao, Z.; Lin, J.; Xu, T.; Chen, Y.; Wang, X.; Chen, J.; Sheng, S. Ligustilide alleviated IL-1β induced apoptosis and extracellular matrix degradation of nucleus pulposus cells and attenuates intervertebral disc degeneration in vivo. Int Immunopharmacol. 2019, 69, 398-407. https://doi.org/10.1016/j.intimp.2019.01.004.

248. Gao, G.; Chang, F.; Zhang, T.; Huang, X.; Yu, C.; Hu, Z.; Ji, M.; Duan, Y. Naringin protects against Interleukin 1β (IL-1β)-induced human nucleus pulposus cells degeneration via downregulation nuclear factor kappa B (NF-κB) Pathway and p53 Expression. Med Sci Monit. 2019, 25, 9963-9972. https://doi.org/10.12659/MSM.918597.

249. Li, Y.; Li, K.; Hu, Y.; Xu, B.; Zhao, J. Piperine mediates LPS induced inflammatory and catabolic effects in rat intervertebral disc. Int J Clin Exp Pathol. 2015, 8(6), 6203-13.

250. Liu, H.B.; Meng, Q.H.; Huang, J.B.; Wang, C.; Liu X.W. Nephroprotective effects of polydatin against ischemia / reperfusion injury: A role for the PI3K / Akt signal pathway. Oxidative Medicine and Cellular Longevity. 2015, 2015, 1–13. https://doi.org/10.1155/2015/ 362158.

251. Jiang, Q.; Yi, M.; Guo, Q.; Wang, C.; Wang, H.; Meng, S.; Liu, C.; Fu, Y.; Ji, H.; Chen, T. Protective effects of polydatin on lipopolysaccharide-induced acute lung injury through TLR4-MyD88-NF-κB pathway. Int Immunopharmacol. 2015, 29(2), 370-376. https://doi.org/10.1016/j.intimp.2015.10.027.

252. Lanzilli, G.; Cottarelli, A.; Nicotera, G.; Guida, S.; Ravagnan, G.; Fuggetta, M.P. Anti-inflammatory effect of resveratrol and polydatin by in vitro IL-17 modulation. Inflammation. 2012, 35(1), 240-8. https://doi.org/10.1007/s10753-011-9310-z.

253. Ravagnan, G.; De Filippis, A.; Cartenì, M.; De Maria, S.; Cozza, V.; Petrazzuolo, M.; Tufano, M.A.; Donnarumma, G. Polydatin, a natural precursor of resveratrol, induces β-defensin production and reduces inflammatory response. Inflammation. 2013, 36(1), 26-34. https://doi.org/10.1007/s10753-012-9516-8.

254. Zhou, L.; Ivanov, I.I.; Spolski, R.; Min, R.; Shenderov, K.; Egawa, T.; Levy, D.E.; Leonard, W.J.; Littman, D.R. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol. 2007, 8(9), 967-74. https://doi.org/10.1038/ni1488.

255. Cho, M.L.; Kang, J.W.; Moon, Y.M.; Nam, H.J.; Jhun, J.Y.; Heo, S.B.; Jin, H.T.; Min, S.Y.; Ju, J.H.; Park, K.S.; Cho, Y.G.; Yoon, C.H.; Park, S.H.; Sung, Y.C.; Kim, H.Y. STAT3 and NF-kappaB signal pathway is required for IL-23-mediated IL-17 production in spontaneous arthritis animal model IL-1 receptor antagonist-deficient mice. J Immunol. 2006, 176(9), 5652-61. https://doi.org/10.4049/jimmunol.176.9.5652.

256. Zhang, J.; Tan, Y.; Yao, F.; Zhang, Q. Polydatin alleviates non-alcoholic fatty liver disease in rats by inhibiting the expression of TNF-α and SREBP-1c. Mol Med Rep. 2012, 6(4), 815-20. https://doi.org/10.3892/mmr.2012.1015.

257. Hogg, S.J.; Chitcholtan, K.; Hassan, W.; Sykes, P.H.; Garrill, A. Resveratrol, Acetyl-Resveratrol, and Polydatin exhibit antigrowth activity against 3D Cell aggregates of the SKOV-3 and OVCAR-8 Ovarian cancer cell lines. Obstet Gynecol Int. 2015, 2015, 279591. https://doi.org/10.1155/2015/279591.

258. Kamel, K.M.; Gad, A.M.; Mansour, S.M.; Safar, M.M.; Fawzy, H.M. Novel anti-arthritic mechanisms of Polydatin in Complete Freund's Adjuvant-induced arthritis in Rats: Involvement of IL-6, STAT-3, IL-17, and NF-кB. Inflammation. 2018, 41(5), 1974-1986. https://doi.org/10.1007/s10753-018-0841-4.

259. Li, B.; Wang, X.L. Effective treatment of polydatin weakens the symptoms of collagen-induced arthritis in mice through its anti-oxidative and anti-inflammatory effects and the activation of MMP-9. Mol Med Rep. 2016, 14(6), 5357-5362. https://doi.org/10.3892/mmr.2016.5903.

260. Gauthaman, K.; Adaikan, P.G.; Prasad, R.N.V. Aphrodisiac properties of Tribulus terrestris extract (Protodioscin) in normal and castrated rats. Life Sci. 2002, 71(12), 1385–1396. https://doi.org/10.1016/s0024-3205(02)01858-1.

261. Hu, K.; Yao, X. Protodioscin (NSC-698 796): its spectrum of cytotoxicity against sixty human cancer cell lines in an anticancer drug screen panel. Planta Med. 2002, 68(4), 297–301. https://doi.org/10.1055/s-2002-26743.

262. Zhang, R.; Gilbert, S.; Yao, X.; Vallance, J.; Steinbrecher, K.; Moriggl, R.; Zhang, D.; Eluri, M.; Chen, H.; Cao, H.; Shroyer, N.; Denson, L.; Han, X. Natural compound methyl protodioscin protects against intestinal inflammation through modulation of intestinal immune responses. Pharmacol Res Perspect. 2015, 3(2), e00118. https://doi.org/10.1002/prp2.118.

263. Lee, J.H.; Lim, H.J.; Lee, C.W.; Son, K.H.; Son, J.K.; Lee, S.K.; Kim, H.P.Methyl protodioscin from the roots of Asparagus cochinchinensis attenuates airway inflammation by inhibiting cytokine production. Evid Based Complement Altern Med. 2015, 2015, 640846. https://doi.org/10.1155/2015/640846.

264. Zhang, X.; Xue, X.; Xian, L.; Guo, Z.; Ito, Y.; Sun, W. Potential neuroprotection of protodioscin against cerebral ischemia-reperfusion injury in rats through intervening inflammation and apoptosis. Steroids. 2016, 113, 52–63. https://doi.org/10.1016/j.steroids.2016.06.008.

265. Liu, J.Y.; Hou, Y.L.; Cao, R.; Qiu, H.X.; Cheng, G.H.; Tu, R.; Wang, L.; Zhang, J.L.; Liu, D. Protodioscin ameliorates oxidative stress, inflammation and histology outcome in Complete Freund's adjuvant induced arthritis rats. Apoptosis. 2017, 22(11), 1454-1460. https://doi.org/10.1007/s10495-017-1420-0.

266. Zhao, Y.; Liu, J.; Liu, C.; Zeng, X.; Li, X.; Zhao, J. Anti-inflammatory effects of pcoumaric acid in LPS-stimulated RAW264.7 cells: involvement of NF-κB and MAPKs Pathways. Med Chem (Los Angeles). 2016, 6, 327–330. https://doi.org/10.4172/2161-0444.1000365.

267. Warren, C.A.; Paulhill, K.J.; Davidson, L.A.; Lupton, J.R.; Taddeo, S.S.; Hong, M.Y.; Carroll, R.J.; Chapkin, R.S.; Turner, N.D. Quercetin may suppress rat aberrant crypt foci formation by suppressing inflammatory mediators that influence proliferation and apoptosis. J. Nutr. 2009, 139, 101–105. https://doi.org/10.3945/jn.108.096271.

268. Li, Y.; Yao, J.; Han, C.; Yang, J.; Chaudhry, M.; Wang, S.; Liu, H.; Yin, Y. Quercetin, infammation and immunity. Nutrients. 2016, 8(3), 167. https://doi.org/10.3390/nu8030167.

269. Taylor, P.; Gartemann, J.; Hsieh, J.; Creeden, J. A systematic review of serum biomarkers anti-cyclic citrullinated peptide and rheumatoid factor as tests for rheumatoid arthritis. Autoimmune Dis. 2011, 2011, 815038. https://doi.org/10.4061/2011/ 815038.

270. Li, K.; Li, Y.; Xu, B.; Mao, L.; Zhao, J. Sesamin inhibits lipopolysaccharide-induced inflammation and extracellular matrix catabolism in rat intervertebral disc. Connect Tissue Res. 2016, 57(5), 347-59. https://doi.org/10.1080/03008207.2016.1182998.

271. Yun, K.J.; Koh, D.J.; Kim, S.H.; Park, S.J.; Ryu, J.H.; Kim, D.G.; Lee, J.Y.; Lee, K.T. Anti-inflammatory effects of sinapic acid through the suppression of inducible nitric oxide synthase, cyclooxygase-2, and proinflammatory cytokines expressions via nuclear factor-kappaB inactivation. J Agric Food Chem. 2008, 56(21), 10265-72. https://doi.org/10.1021/jf802095g.

272. di Meglio, P.; Ianaro, A.; Ghosh, S. Amelioration of acute inflammation by systemic administration of a cell-permeable peptide inhibitor of NF-kappaB activation. Arthritis Rheum. 2005, 52(3), 951–958. https://doi.org/10.1002/art.20960.

273. Lee, Y.R.; Kweon, S.H.; Kwon, K.B.; Park, J.W.; Yoon, T.R.; Park, B.H. Inhibition of IL1 beta-mediated inflammatory responses by the IkappaB alpha super-repressor in human fibroblast-like synoviocytes. Biochem. Biophys. Res. Commun. 2009, 378(1), 90–94. https://doi.org/10.1016/j.bbrc.2008.11.002.

274. Xia, T.; Gao, R.; Zhou, G.; Liu, J.; Li, J.; Shen, J. Trans-cinnamaldehyde inhibits IL-1β-stimulated inflammation in chondrocytes by suppressing NF-κB and p38-JNK pathways and exerts chondrocyte protective effects in a rat model of osteoarthritis. BioMed Res Int. 2019, 2019, 4039472. https://doi.org/10.1155/2019/4039472.

275. Pahan, S.; Pahan, K. Can cinnamon spice down autoimmune diseases? J Clin Exp Immunol. 2020, 5(6), 252-8. https://doi.org/10.33140/jcei.05.06.01.

276. El-Tanbouly, G.S.; Abdelrahman, R.S. Novel anti-arthritic mechanisms of trans-cinnamaldehyde against complete Freund's adjuvant-induced arthritis in mice: involvement of NF-кB/TNF-α and IL-6/IL-23/ IL-17 pathways in the immuno-inflammatory responses. Inflammopharmacology. 2022, 30(5), 1769-1780. https://doi.org/10.1007/s10787-022-01005-y.

277. Liu, P.; Wang, J.; Wen, W.; Pan, T.; Chen, H.; Fu, Y.; Wang, F.; Huang, J.H.; Xu, S. Cinnamaldehyde suppresses NLRP3 derived IL-1β via activating succinate/HIF-1 in rheumatoid arthritis rats. Int Immunopharmacol. 2020, 84, 106570. https://doi.org/10.1016/j.intimp.2020.106570.

278. Cheng, W.X.; Zhong, S.; Meng, X.B.; Zheng, N.Y.; Zhang, P.; Wang, Y.; Qin, L.; Wang, X.L. Cinnamaldehyde inhibits inflammation of human synoviocyte cells through regulation of Jak/Stat pathway and ameliorates collagen-induced arthritis in rats. J Pharmacol Exp Ther. 2020, 373(2), 302–310. https://doi.org/10.1124/jpet.119.262907.

279. Fang, W.; Zhou, X.; Wang, J.; Xu, L.; Zhou, L.; Yu, W.; Tao, Y.; Zhu, J.; Hu, B.; Liang, C.; Li, F.; Hua, J.; Chen, Q. Wogonin mitigates intervertebral disc degeneration through the Nrf2/ARE and MAPK signaling pathways. Int Immunopharmacol. 2018, 65, 539-549. https://doi.org/10.1016/j.intimp.2018.10.024.

280. Shnayder, N.A.; Ashhotov, A.V.; Trefilova, V.V.; Novitsky, M.A.; Medvedev, G.V.; Petrova, M.M.; Narodova, E.A.; Kaskaeva, D.S.; Chumakova, G.A.; Garganeeva, N.P.; Lareva, N.V.; Al-Zamil, M.; Asadullin, A.R.; Nasyrova, R.F. High-Tech Methods of Cytokine Imbalance Correction in Intervertebral Disc Degeneration. Int J Mol Sci. 2023; 24(9): 7692. https://doi.org/ 10.3390/ijms24097692.


Review

For citations:


Ashkhotov A.V., Trefilova V.V., Shirukova A.M., Shnayder N.A., Petrova M.M., Chavyr V.S. A Personalized Approach to Phytotherapy for Pain and Inflammation in Patients with Intervertebral Disc Degeneration: Prospects and Limitations. Personalized Psychiatry and Neurology. 2025;5(4):26-68. https://doi.org/10.52667/2712-9179-2025-5-4-26-68

Views: 24


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2712-9179 (Online)