Preview

Personalized Psychiatry and Neurology

Advanced search

Pharmacogenetic Testing of Cytochrome P450 Metabolizing Enzymes in 28-Year-Old Man with Treatment-Resistant Schizophrenia

https://doi.org/10.52667/2712-9179-2022-2-1-81-88

Abstract

Schizophrenia is a common and socially significant mental disorder that requires long-term use of antipsychotics (APs). Long-term use of APs increases the risk of developing adverse drug reactions (ADRs) and/or therapeutic resistance in some patients. This may be due to a genetically determined impairment of APs metabolism by cytochrome P450 enzymes. Pharmacogenetic testing (PGx) is a method to identify a group of patients with a high risk of developing AP-induced ADRs. Our experience of using PGx to search for low-functional and non-functional single nucleotide variants (SNVs) / polymorphisms of the CYP1A2, CYP2C9, CYP3A4, CYP3A5 and CYP2D6) genes encoding cytochrome P450 enzymes involved in APs metabolism demonstrates the importance of this new personalized approach to the choice of APs and its dosing in patients with pharmacogenetic profile poor metabolizer. The main purpose of the case report is to present the experience of using PGx in a 28-year-old patient with treatment-resistant schizophrenia and a medical history of AP-induced ADRs.

About the Authors

A. K. Abdyrakhmanova
V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology
Russian Federation

Aiperi K. Abdyrakhmanova

Saint Petersburg 192019; +7(812)67002207813



R. F. Nasyrova
V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology
Russian Federation

Regina F. Nasyrova

Saint Petersburg 192019; +7(812)67002207813



References

1. Katona, L.; Bitter, I.; Czobor, P. A meta-analysis of effectiveness of real-world studies of antipsychotics in schizophrenia: Are the results consistent with the findings of randomized controlled trials? Transl Psychiatry 2021, 11(1), 510. doi: 10.1038/s41398-021-01636-9.

2. Kaar, S.J.; Natesan, S.; McCutcheon, R.; Howes, O.D. Antipsychotics: Mechanisms underlying clinical response and side-effects and novel treatment approaches based on pathophysiology. Neuropharmacology 2020, 172, 107704. doi: 10.1016/j.neuropharm.2019.107704.

3. Kravtsov, V.V.; Filippov, I.A.; Vaiman, E.E.; Shnayder, N.A.; Nasyrova, R.F. Pharmacogenetic aspects of the dopaminergic system in clozapine pharmacodynamics. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova 2020, 120(7), 134-141. (In Russ.). https://doi.org/10.17116/jnevro2020120071134.

4. Nasyrova, R.F.; Schnaider, N.A.; Mironov, K.O.; Shipulin, G.A.; Dribnokhodova, O.P.; Golosov, E.A.; Tolmachev, M.Yu; Andreev, B.V.; Kurylev, A.A.; Akhmetova, L.Sh.; Limankin, O.V.; Neznanov, N.G. Pharmacogenetics of schizophrenia in real clinical practice: a clinical case. Neurology, Neuropsychiatry, Psychosomatics 2018, 10(4), 88–93. https://elibrary.ru/item.asp?id=36547318.

5. Shnayder, N.A.; Abdyrakhmanova, A.K.; Nasyrova, R.F. Oxidation of Antipsychotics. Encyclopedia 2022.

6. Dahl, M.L. Cytochrome P450 phenotyping/genotyping in patients receiving antipsychotics: useful aid to prescribing? Clin Pharmacokinet 2002, 41(7), 453-70. doi: 10.2165/00003088-200241070-00001.

7. Nasyrova, R.F.; Dobrodeeva, V.S.; Scopin, S.D.; Shnayder, N.A.; Neznanov, N.G. Problems and prospects for the implementation of pharmacogenetic testing in real clinical practice in the Russian Federation. Bulletine of Psychiatry, Neurology and Neurosurgery 2020, 3, 6-8. (In Russ.). https://doi.org/10.33920/med-01-2003-01.

8. The Human Protein Atlas. Available online: https://www.proteinatlas.org (accessed on 14 February 2022).

9. Koonrungsesomboon, N.; Khatsri, R.; Wongchompoo, P.; Teekachunhatean, S. The impact of genetic polymorphisms on CYP1A2 activity in humans: a systematic review and meta-analysis. Pharmacogenomics J 2018, 18(6), 760-768. doi: 10.1038/s41397-017-0011-3.

10. Bahar, M.A.; Setiawan, D.; Hak, E.; Wilffert, B. Pharmacogenetics of drug-drug interaction and drug-drug-gene interaction: a systematic review on CYP2C9, CYP2C19 and CYP2D6. Pharmacogenomics 2017, 8(7), 701-739. doi: 10.2217/pgs-2017-0194.

11. Ingelman-Sundberg, M. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. Pharmacogenomics J 2005, 5(1), 6-13. doi: 10.1038/sj.tpj.6500285.

12. Zhou, S.F. Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4. Curr Drug Metab 2008, 9(4), 310-22. doi: 10.2174/138920008784220664.

13. Ragia, G.; Dahl, M.L.; Manolopoulos, V.G. Influence of CYP3A5 polymorphism on the pharmacokinetics of psychiatric drugs. Curr Drug Metab 2016, 17(3), 227-36. doi: 10.2174/1389200217666151210125831.

14. Genesight. Available online: https://genesight.com/product/ (accessed on 14 February 2022).

15. Genecept Assay. Available online: https://ncbi.nlm.nih.gov/gtr/tests/523653.4/ (accessed on 14 February 2022)


Review

For citations:


Abdyrakhmanova A.K., Nasyrova R.F. Pharmacogenetic Testing of Cytochrome P450 Metabolizing Enzymes in 28-Year-Old Man with Treatment-Resistant Schizophrenia. Personalized Psychiatry and Neurology. 2022;2(1):81-88. https://doi.org/10.52667/2712-9179-2022-2-1-81-88

Views: 631


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2712-9179 (Online)