Preview

Personalized Psychiatry and Neurology

Advanced search

The Role of Type I Collagen in Intervertebral Disc Degeneration

https://doi.org/10.52667/2712-9179-2022-2-1-46-56

Abstract

The intervertebral discs degeneration (IDD) is one of the leading structural substrates, causing chronic low back pain (LBP). LBP is a common neurological disorder but the LPB genetic predictors have not been sufficiently studied. Fibril collagens are important components of the nucleus pulposus, the anulus fibrosus and the vertebral endplate. Collagen type I is most studied as a structural component of the nucleus pulposus and the anulus fibrosus of the intervertebral disc. Single nucleotide variants (SNVs) of genes encoding alpha-1 and alpha-2 chains of collagen type I are associated with IDD, but the results of genetical studies are not translated into action. (1) The purpose of the study is the analysis of associative genetic and genome-wide studies of the COL1 gene family role in the development of IDD and LBP. The study of the COL1A1 gene’s SNVs association of with the IDD is important for the perspective of personalized neurology. A personalized approach can help to identify patients at high risk of the IDD developing and its complications, including intervertebral disc herniation and spinal stenoses in young and working age patients. On the other hand, the role of nutritional support for patients, carriers of the SNV risk alleles in the COL1A1 gene, including collagen hydrolysates and oxyproline preparations has not been sufficiently studied.

About the Authors

Z. A. Nurgaliev
V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology
Russian Federation

Zaitun A. Nurgaliev

192019, Saint Petersburg



V. V. Trefilova
V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology; The Hospital for War Veterans
Russian Federation

Vera V. Trefilova

192019, Saint Petersburg; 193079, St. Petersburg; Tel.: +7-(812)-670-89-37



M. Al-Zamil
Russian University of Peoples' Friendship
Russian Federation

Mustafa Al-Zamil

117198, Moscow



N. A. Shnayder
V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology; Shared Core Facilities Molecular and Cell Technologies, Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University
Russian Federation

Natalia A. Shnayder

192019, Saint Petersburg; Krasnoyarsk, 660022



References

1. Pizova, N.V. Acute and chronic low back pain. Neurology and Rheumatology (Suppl. Consilium medicum). 2019; 1: 25–30. doi: 10.26442/2414357X.2019.1.190348

2. Alekseeva, L.I.; Alekseev, V.V.; Barinov, A.N.; Singh, G.; Novel approaches to treating nonspecific low back pain. Rheumatology Science and Practice. 2016; 54(1): 16-20 . doi:10.14412/1995-4484-2016-16-20

3. Rampersaud, Y.R.; Bidos, A; Fanti, C.; Perruccio, A.V. The need for multidimensional stratification of chronic low back pain (LBP). Spine (Phila Pa 1976). 2017; 42(22): 1318-1325. doi: 10.1097/BRS.0000000000002237

4. Parfenov, V.A.; Golovacheva, V.A. Diagnosis and treatment of acute low back pain. Therapeutic Archive. 2019; 91 (8): 155–159. doi: 10.26442/00403660.2019.08.000315

5. Zobel, B.B.; Vadalà, G.; Del Vescovo, R.; Battisti, S; Martina,F.M.; Stellato. L.; Leoncini, E.; Borthakur, A.; Denaro, V. T1ρ magnetic resonance imaging quantification of early lumbar intervertebral disc degeneration in healthy young adults. Spine (Phila Pa 1976). 2012; 37(14): 1224-30. doi: 10.1097/BRS.0b013e31824b2450.

6. Gornaeva, L.S. Juvenile osteochondrosis complicated by hernia intervertebral disc (literature review). Journal of New Medical Technologies . 2020 ; 14(2): 6-12 doi: 10.24411/2075-4094-2020-16599.

7. Dehnokhalaji, M.; Golbakhsh, M.R.; Siavashi, B.; Talebian, P.; Javidmehr, S.; Bozorgmanesh, M. Evaluation of the degenerative changes of the distal intervertebral discs after internal fixation surgery in adolescent idiopathic scoliosis. Asian Spine . 2018; 12(6): 1060-1068. doi: 10.31616/asj.2018.12.6.1060.

8. Olyunin, Y.A. Spinal pain: causes and treatment policy. Modern Rheumatology . 2018 ; 12(3): 53—60. doi: 10.14412/1996-7012-2018-3-53-60

9. Borodulina, I.V.; Suponeva, N.A.; Badalov, N.G. Nonspecific back pain: clinical pathogenic features and therapeutic modalities RMJ. 2016; 25; 1699–1704.

10. Stevans, J. M.; Delitto, A.; Khoja, S. S.; Patterson, C. G.; Smith, C. N.; Schneider, M. J.; Freburger, J. K.; Greco, C. M.; Freel, J. A.; Sowa, G. A.; Wasan, A. D.; Brennan, G. P.; Hunter, S. J.; Minick, K. I.; Wegener, S. T.; Ephraim, P. L.; Friedman, M.; Beneciuk, J. M.; George, S. Z.; Saper, R. B. Risk factors associated with transition from acute to chronic low back pain in US patients seeking primary care. JAMA Netw Open. 2021; 4(2): 2037371. doi:10.1001/jamanetworkopen.37371

11. Nurpolatova, S; Kosymbetova, A.; Dzhumanazarova, G. Back pain, as one of the problems of medicine. Bulletin of Science and Practice. 2021 ; 7(6), 200-207. doi: 10.33619/2414-2948/67/23

12. Filatova, E.S.; Karateev, A.E.; Filatova, E.G. Back pain: the most common errors in diagnosis and therapy RMJ. Medical Review. 2018; 11; 3–8.

13. Parfenov, V.A.; Yakhno, N.N.; Kukushkin, M.L.; et al. Acute nonspecific (musculoskeletal) low back pain. Guidelines of the Russian Society for the Study of Pain (RSSP). Neurology, Neuropsychiatry, Psychosomatics. 2018; 10(2): 4–11. doi : 10.14412/2074-2711-2018-2-4-11

14. Churyukanov, M.V.; Kachanovsky, M.S.; Kuzminova, T.I. Modern view on the etiopathogenesis of back pain and approaches to patient management . RMJ. Medical Review. 2018; 9, 51–55.

15. Trefilova, V.V.; Shnayder, N.A.; Petrova, M.M.; Kaskaeva, D.S.; Tutynina, O.V.; Petrov, K.V.; Popova, T.E.; Balberova, O.V.; Medvedev, G.V.; Nasyrova, R.F. The role of polymorphisms in collagen-encoding genes in intervertebral disc degeneration. Biomolecules. 2021; 11(9):1279. doi:10.3390/biom11091279

16. Mirit, S.; Kelly, W.; Rami, Haj-Ali. Chapter 7 - The mechanical role of collagen fibers in the intervertebral disc, Editor(s): Fabio Galbusera, Hans-Joachim Wilke, Biomechanics of the Spine, Academic Press, 2018 , 105-123, ISBN 9780128128510 , doi:10.1016/B978-0-12-812851-0.00007-0.

17. Types and functions of collagen. Meduniver.com. Available online: https://meduniver.com/Medical/genetika/tipi_i_funkcii_kollagena.html (accessed on 03.11.2021)

18. Tyunina, V.V.; Krasnov, A.V.; Girichev, G.V. Proline and 4-hydroxyproline: mass spectrum, sublimation, structure. In XXVIII Russian Youth Scientific Conference "Problems of Theoretical and Experimental Chemistry." Yekaterinburg, Ural University Publishing House, 2018 (No. 28, p. 435-435).

19. Vavilova, T.P Biochemistry of tissues and fluids of the oral cavity: textbook , 2nd ed., Rev. and add. Moscow 2008. 208 p.

20. Potekhina Y.P. Collagen structure and function. Russian Osteopathic Journal. 2016; (1-2): 87-99. doi:10.32885/2220-0975-2016-1-2-87-99

21. Kulkarni, P.; Maniyar,M.. Utilization of fish collagen in pharmaceutical and biomedical industries: Waste to Wealth Creation. 2020 ; 6. 1-10. doi:10.26479/2020.0603.02

22. Gelse , K.; Pöschl, E.; Aigner, T. Collagens-structure, function, and biosynthesis. Adv Drug Deliv Rev. 2003; 55(12): 1531-46. doi: 10.1016/j.addr.2003.08.002.

23. Lukin, A. A. Structural-mechanical and chemical features of native collagen: International cooperation: experience, problems and prospects: Collection of materials of the international research-to-practice conference, Kemerovo: Limited Liability Company "West Siberian Scientific Center", 2020. pp. 51-54

24. Potekaev, N.N.; Borzykh, O.B.; Medvedev, G.V.; Petrova, M.M.; Gavrilyuk, O.A.; Karpova, E.I.; Trefilova, V.V.; Demina, O.M.; Popova, T.E.; Shnayder, N.A. Genetic and epigenetic aspects of skin collagen fiber turnover and functioning. Cosmetics 2021, 8, 92. doi:10.3390/cosmetics8040092

25. Van Gulick, L.; Saby, C.; Morjani, H.; Beljebbar, A. . Age-related changes in molecular organization of type I collagen in tendon as probed by polarized SHG and Raman microspectroscopy. Scientific reports , 2019, 9(1), 7280. doi:/10.1038/s41598-019-43636-2

26. UCSC Genome Browser on Human (GRCh38/hg38) Available online: https://genome.ucsc.edu/cgibin/hgTracks?db=hg38&hgFind=omimGeneAcc&position=120150 (accessed on 8.11.2021)

27. Ignatovich, O.N.; Namazova-Baranova, L.S.; Margieva, T.V.; Yakhyaeva, G.T.; Zhurkova, N.V.; Savostyanov, K.V.; Pushkov, A.A.; Krotov, I.A. Osteogenesis imperfecta: diagnostic features. Pediatric Pharmacology. 2018; 15 (3): 224–232. doi: 10.15690/pf.v15i3.190

28. Zejia, L.; Jican, Z.; Xinjia, W. Compound phenotype of osteogenesis imperfecta and Ehlers–Danlos syndrome caused by combined mutations in COL1A1 and COL5A1. Biosci , 2019; 39 (7): BSR20181409. doi: 10.1042/BSR20181409

29. Colombi, M.; Dordoni, C.; Venturini, M.; Zanca, A.; Calzavara-Pinton, P.; Ritelli, M.; Delineation of Ehlers-Danlos syndrome phenotype due to the c.934C>T, p.(Arg312Cys) mutation in COL1A1: Report on a three-generation family without cardiovascular events, and literature review. Am J Med Genet A. 2017 ; 173(2): 524-530. doi: 10.1002/ajmg.a.38035.

30. ) Merdler-Rabinowicz, R.; Grinberg, A.; Jacobson, J.M.; et al. Fetuin-A deficiency is associated with infantile cortical hyperostosis (Caffey disease). Pediatr Res , 2019 ; 86, 603–607. doi: 10.1038/s41390-019-0499-0

31. Gnoli, M.; Brizola, E.; Tremosini, M.; Pedrini, E.; Maioli, M.; Mosca, M.; Bassotti, A.; Castronovo, P.; Giunta, C.; Sangiorgi, L. COL1-related disorders: case report and review of overlapping syndromes. Front Genet. 2021; 12: 640558. doi: 10.3389/fgene.2021.640558

32. Rong, Y.; Sugumaran, G.; Silbert, J.E.; Spector, M. Proteoglycans synthesized by canine intervertebral disc cells grown in a type I collagen-glycosaminoglycan matrix. Tissue Eng. 2002, 8, 1037–1047.

33. Sarver, J.J.; Elliott, D.M. Altered disc mechanics in mice genetically engineered for reduced type I collagen. Spine, 2004, 29, 1094–1098.

34. Genetic Home Reference, Your Guide to Undersatanding Genetic Conditions COL1A1. 2012. Available online: http://www.ghr.nlm.nih.gov/gene/COL1A1 (accessed on 14.04.2021)

35. Pluijm, S.M.; van Essen, H.W.; Bravenboer, N.; Uitterlinden, A.G.; Smit, J.H.; Pols, H.A.; Lips, P. Collagen type I alpha1 Sp1 polymorphism, osteoporosis, and intervertebral disc degeneration in older men and women. Ann. Rheum Dis. 2004, 63, 71–77.

36. Tilkeridis, C.; Bei, T.; Garantziotis, S.; Stratakis, C.A. Association of a COL1A1 polymorphism with lumbar disc disease in young military recruits. J. Med. Genet. 2005, 42, 44. doi: 10.1136/jmg.2005.033225

37. Videman, T.; Saarela, J.; Kaprio, J.; Näkki, A.; Levälahti, E.; Gill, K.; Peltonen, L.; Battié, M.C. Associations of 25 structural, degradative, and inflammatory candidate genes with lumbar disc desiccation, bulging, and height narrowing. Arthritis Rheum. 2009, 60, 470–481.

38. Anjankar, S.D.; Poornima, S.; Raju, S.; Jaleel, M.A.; Bhiladvala, D.; Hasan, Q. Degenerated intervertebral disc prolapse and its association of collagen I alpha 1 Spl gene polymorphism: A preliminary case control study of Indian population. Indian J. Orthop. 2015, 49, 589–594. doi: 10.4103/0019-5413.168765

39. Zhong, B.; Huang, D.; Ma, K.; Deng, X.; Shi, D.; Wu, F.; Shao, Z. Association of COL1A1 rs1800012 polymorphism with musculoskeletal degenerative diseases: a meta-analysis. Oncotarget. 2017; 8(43): 75488-75499. doi: 10.18632/oncotarget.20797

40. Hanaei, S.; Abdollahzade, S.; Sadr, M.; Fattahi, E.; Mirbolouk, M.H.; Khoshnevisan, A.; Rezaei, N. Lack of association between COL1A1 and COL9A2 single nucleotide polymorphisms and intervertebral disc degeneration. Br. J. Neurosurg. 2021, 35, 77–79. doi: 10.1080/02688697.2020.1765971


Review

For citations:


Nurgaliev Z.A., Trefilova V.V., Al-Zamil M., Shnayder N.A. The Role of Type I Collagen in Intervertebral Disc Degeneration. Personalized Psychiatry and Neurology. 2022;2(1):46-56. https://doi.org/10.52667/2712-9179-2022-2-1-46-56

Views: 513


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2712-9179 (Online)