Preview

Personalized Psychiatry and Neurology

Advanced search

Perspectives of personalized approach to prevention and treatment of anticonvulsant-induced osteoporosis via action on vitamin D exchange and VDR expression

https://doi.org/10.52667/2712-9179-2021-1-2-46-62

Full Text:

Abstract

Anticonvulsant-induced osteoporosis (AIO) and associated pain syndromes and patient disabilities are an important interdisciplinary medical problem generated by various molecular, genetic and pathophysiological mechanisms. AIO are the most important pathological processes associated with chronic pain in adults with epilepsy. Standard approaches to their prevention and treatment do not always solve the problem of the progression of the pathological process and chronicity of AIO. This is the reason for the search for new personalized strategies for the prevention and treatment of AIO. Vitamin D metabolism, expression and specificity of vitamin D receptors (VDRs) may play a key role in the development of AIO and chronic back pain in patients with epilepsy. The aim of the study was to review publications on changes in the vitamin D system in patients with AIO. We searched for articles published in e-Library, PubMed, Oxford Press, Clinical Case, Springer, Elsevier, and Google Scholar. The search was carried out by key-words and their combinations. The role of vitamin D and VDR in the development of AIO and the chronicity of back pain has been demonstrated mainly in animal models and humans. Associative genetic studies have shown that single nucleotide variants (SNVs) of the VDR gene encoding VDR may be associated with the development of osteoporosis of the spine (including those associated with the intake of an anticonvulsants). The prospects for the use of vitamin D preparations for modulating the effect of anticonvulsants used to treat epilepsy are discussed. Genetic association studies of VDR gene SNVs are important for understanding the genetic predictors of AIO and chronic back pain in patients with epilepsy, as well as for developing new personalized pharmacotherapy strategies.

About the Authors

E. A. Dontseva
Novosibirsk State Medical University
Russian Federation

Eugenia А. Dontseva

Novosibirsk



V. V. Trefilova
The Hospital for War Veterans
Russian Federation

Vera V. Trefilova

St. Petersburg



T. E. Popova
TheYakutsk Scientific Center for Complex Medical Problems
Russian Federation

Tatiana E. Popova

Yakutsk



M. M. Petrova
V. F. Voino-Yasenetsky Krasnoyarsk State Medical University
Russian Federation

Marina M. Petrova

Krasnoyarsk



M. Al-Zamil
Peoples' Friendship University of Russia
Russian Federation

Mustafa Al-Zamil

Moscow



References

1. Gokcek, E.; Kaydu, A. Assessment of Relationship between Vitamin D Deficiency and Pain Severity in Patients with Low Back Pain: A Retrospective, Observational Study. Anesth Essays Res. 2018, 12, 680-684, doi: 10.4103/aer.AER_96_18.

2. Holick, M.F. Vitamin D: a D-Lightful health perspective. Nutr Rev. 2008, 66, 182-194, doi: 10.1111/j.1753-4887.2008.00104.x.

3. Pfeifer, M.; Begerow B.; Minne, H. Vitamin D and Muscle Function. Osteoporos Int. 2002, 13, 187–194, https://doi.org/10.1007/s001980200012.

4. Dirks-Naylor, A.J.; Lennon-Edwards, S. The effects of vitamin D on skeletal muscle function and cellular signaling. J Steroid Biochem Mol Biol. 2011, 125, 159-168, doi: 10.1016/j.jsbmb.2011.03.003. Epub 2011 Mar 21. PMID: 21397021.

5. Buitrago, C.; Boland, R. Caveolae and caveolin-1 are implicated in 1alpha,25(OH)2-vitamin D3-dependent modulation of Src, MAPK cascades and VDR localization in skeletal muscle cells. J Steroid Biochem Mol Biol. 2010, 121, 169-175, doi: 10.1016/j.jsbmb.2010.03.002.

6. Hamilton, B. Vitamin D and human skeletal muscle. Scand J Med Sci Sports. 2010, 20, 182-190, doi: 10.1111/j.1600-0838.2009.01016.x.

7. Buitrago, C.; González Pardo, V.; de Boland, A.R. Nongenomic action of 1 alpha, 25(OH)(2)-vitamin D3. Activation of muscle cell PLC gamma through the tyrosine kinase c-Src and PtdIns 3-kinase. Eur J Biochem. 2002, 269, 2506-2515, doi: 10.1046/j.1432-1033.2002.02915.x.

8. Vazquez, G.; de Boland, A.R.; Boland, R.L. Involvement of calmodulin in 1alpha, 25-dihydroxyvitamin D3 stimulation of store-operated Ca2+ influx in skeletal muscle cells. J Biol Chem. 2000, 275, 16134-16138, doi: 10.1074/jbc.C901008199.

9. Santillán, G.; Katz, S.; Vazquez, G.; Boland, R.L. TRPC3-like protein and vitamin D receptor mediate 1alpha, 25(OH)2D3- induced SOC influx in muscle cells. Int J Biochem Cell Biol. 2004, 36, 1910-1918, doi:10.1016/j.biocel.2004.01.027. PMID: 15203106.

10. Bollen, S.E.; Atherton, P.J. Myogenic, genomic and non-genomic influences of the vitamin D axis in skeletal muscle. Cell Biochem Funct. 2021, 39, 48– 59, doi:10.1002/cbf.3595.

11. Song, Z.; Wang, Y.; Zhang, F.; Yao, F.; Sun, C. Calcium Signaling Pathways: Key Pathways in the Regulation of Obesity. Int. J. Mol. Sci. 2019, 20, 2768. https://doi.org/10.3390/ijms20112768.

12. Balberova, O.V. Candidate genes and single-nucleotide gene variants associated with muscle and tendon injuries in cyclic sports athletes. Personalized Psychiatry and Neurology. 2021, 1, 64-72.

13. Zhou, Q.G.; Hou, F.F.; Guo, Z.J.; Liang, M.; Wang, G.B.; Zhang, X. 1,25-Dihydroxyvitamin D improved the free fatty-acidinduced insulin resistance in cultured C2C12 cells. Diabetes Metab Res Rev. 2008, 24, 459-464, doi:10.1002/dmrr.873.

14. Martini, L.A.; Wood, R.J. Vitamin D status and the metabolic syndrome. Nutr Rev. 2006, 64, 479-486, doi:10.1111/j.1753-4887.2006.tb00180.x.

15. De Luca, P.; de Girolamo, L.; Perucca Orfei, C.; Viganò, M.; Cecchinato, R.; Brayda-Bruno, M.; Colombini, A. Vitamin D's Effect on the Proliferation and Inflammation of Human Intervertebral Disc Cells in Relation to the Functional Vitamin D Receptor Gene FokI Polymorphism. Int J Mol Sci. 2018, 19, 2002, doi:10.3390/ijms19072002.

16. Larson-Meyer, D.E.; Willis, K.S. Vitamin D and athletes. Curr Sports Med Rep. 2010, 9, 220-226, doi:10.1249/JSR.0b013e3181e7dd45.

17. Epilepsysociety. Available online: https://epilepsysociety.org.uk/living-epilepsy/women-and-epilepsy/contraception-andepilepsy (accessed on 25 September 2021)

18. Kelly, P.J.; Morrison, N.A.; Sambrook, P.N.; Nguyen, T.V. Eisman, J.A. Genetic influences on bone turnover, bone density and fracture. Eur J Endocrinol. 1995, 133, 265–271, doi: 10.1530/eje.0.1330265.

19. Parveen, B.; Parveen, A.; Vohora, D. Biomarkers of Osteoporosis: An Update. Endocr Metab Immune Disord Drug Targets. 2019, 19, 895-912, doi:10.2174/1871530319666190204165207.

20. Compston, J.E.; McClung, M.R.; Leslie, W.D. Osteoporosis. Lancet. 2019, 393, 364–376, doi:10.1016/S0140-6736(18)32112-3.

21. Boonen, S.; Bischoff-Ferrari, H.A.; Cooper, C. Addressing the musculoskeletal components of fracture risk with calcium and vitamin D: a review of the evidence. Calcif Tissue Int. 2006, 78, 257–270, DOI:10.1007/s00223-005-0009-8.

22. Larsen, E.R.; Mosekilde, L.; Foldspang, A. Vitamin D and calcium supplementation prevents osteoporotic fractures in elderly community dwelling residents: a pragmatic population-based 3-year intervention study. J Bone Miner Res. 2004, 19, 370–378, DOI:10.1359/JBMR.0301240.

23. Cannarella, R.; Barbagallo, F.; Condorelli, R.A.; Aversa, A.; La Vignera, S.; Calogero, A.E. Osteoporosis from an Endocrine Perspective: The Role of Hormonal Changes in the Elderly. J Clin Med. 2019, 8, 1564, doi: 10.3390/jcm8101564.

24. Yamamoto, Y.; Yoshizawa, T.; Fukuda, T.; Shirode-Fukuda, Y.; Yu, T.; Sekine, K.; Sato, T.; Kawano, H.; Aihara, K.; Nakamichi, Y.; Watanabe, T.; Shindo, M.; Inoue, K.; Inoue, E.; Tsuji, N.; Hoshino, M.; Karsenty, G.; Metzger, D.; Chambon P.; Kato, S.; Imai, Y. Vitamin D receptor in osteoblasts is a negative regulator of bone mass control. Endocrinology. 2013, 154, 1008-1020, doi:10.1210/en.2012-1542.

25. Nakamichi, Y.; Udagawa, N.; Horibe, K.; Mizoguchi, T.; Yamamoto, Y.; Nakamura, T.; Hosoya, A.; Kato, S.; Suda, T.; Takahashi, N. VDR in Osteoblast-Lineage Cells Primarily Mediates Vitamin D Treatment-Induced Increase in Bone Mass by Suppressing Bone Resorption. J. Bone Miner. Res. 2017, 32, 1297–1308, doi:10.1002/jbmr.3096.

26. Francis, R.M.; Peacock, M.; Barkworth, S.A. Renal impairment and its effects on calcium metabolism in elderly women. Age Ageing. 1984, 13, 14–20, doi:10.1093/ageing/13.1.14.

27. Eastell, R.; Rosen, C.J.; Black, D.M.; Cheung, A.M.; Murad, M.H.; Shoback, D. Pharmacological Management of Osteoporosis in Postmenopausal Women: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2019, 104, 1595–1622, doi: 10.1210/jc.2019-00221.

28. Epstein, S.; Bryce, G.; Hinman, J.; Miller, O.; Riggs, B.; Hui, S.; Johnston, C. The influence of age on bone mineral regulating hormones. Bone. 1986, 7, 421–425, doi: 10.1016/8756-3282(86)90001-3.

29. Van Abel, M.; Huybers, S.; Hoenderop, J.G.; van der Kemp, A.W.; van Leeuwen, J.P.; Bindels, R.J. Age-dependent alterations in Ca2+ homeostasis: Role of TRPV5 and TRPV6. Am. J. Physiol. Renal. Physiol. 2006, 291, 1177–1183, doi: 10.1152/ajprenal.00038.2006.

30. Pascussi, J.M.; Robert, A.; Nguyen, M.; Walrant-Debray, O.; Garabedian, M.; Martin, P.; Pineau, T.; Saric, J.; Navarro, F.; Maurel, P.; Vilarem, M.J. Possible involvement of pregnane X receptor-enhanced CYP24 expression in drug-induced osteomalacia. J Clin Invest. 2005, 115, 177–186, doi: 10.1172/JCI200521867.

31. Valsamis, H. A.; Arora, S. K.; Labban, B.; McFarlane, S. I. Antiepileptic drugs and bone metabolism. Nutrition & metabolism, 2006, 3, 36, doi:10.1186/1743-7075-3-36.

32. Holick, M.F. Stay tuned to PXR: an orphan actor that may not be D-structive only to bone. J Clin Invest. 2005, 115, 32–34, doi:10.1172/JCI200523995.

33. Arora, E.; Singh, H.; Gupta, Y. K. Impact of antiepileptic drugs on bone health: Need for monitoring, treatment, and prevention strategies. Journal of family medicine and primary care, 2016, 5, 248–253, https://doi.org/10.4103/2249-4863.192338.

34. Lee, Y.J.; Park, K.M.; Kim, Y.M.; Yeon, G.M.; Nam, S.O. Longitudinal change of vitamin D status in children with epilepsy on antiepileptic drugs:prevalence and risk factors. Pediatr Neurol. 2015, 52, 153-159, doi:10.1016/j.pediatrneurol.2014.10.008.

35. Vildiz, E.P.; Poyrazoglu, S.; Bektas, G.; Kardelen, A.D.; Aydinli, N. Potential risk factors for vitamin D levels in mediumand long-term use of antiepileptic drugs in childhood. Acta Neurol Belg. 2017, 117, 447-453, doi: 10.1007/s13760-017-0775-x.

36. Hong, A. R.; Kim, S. W. Effects of Resistance Exercise on Bone Health. Endocrinology and metabolism (Seoul, Korea), 2018, 33, 435–444, doi:10.3803/EnM.2018.33.4.435.

37. Nakken, K.O.; Taubøll, E. Bone loss associated with use of antiepileptic drugs. Expert Opin Drug Saf. 2010, 9, 561–571, doi: 10.1517/14740331003636475.

38. Pack, A.M., Gidal, B., Vazquez, B. Bone disease associated with antiepileptic drugs. Cleve Clin J Med. 2004, 71, 42–48, doi:10.3949/ccjm.71.suppl_2.s42.

39. Nagarjunakonda, S.; Amalakanti, S.; Uppala, V.; Rajanala, L.; Athina, S. Vitamin D in epilepsy: vitamin D levels in epilepsy patients, patients on antiepileptic drug polytherapy and drug-resistant epilepsy sufferers. Eur J Clin Nutr. 2016, 70, 140- 142, doi.org/10.1038/ejcn.2015.127.

40. Cansu, A.; Yesilkaya, E; Serdaroglu, A.; Hirfanoglu, T.L.; Camurdan, O.; Gülbahar, O. et al. Evaluation of bone turnover in epileptic children using oxcarbazepine. Pediatr Neurol. 2008, 39, 266-271, doi:10.1016/j.pediatrneurol.2008.07.001.

41. Verrotti, A.; Coppola, G.; Parisi, P.; Mohn, A.; Chiarelli, F. Bone and calcium metabolism and antiepileptic drugs. Clin Neurol Neurosurg. 2010, 112, 1-10, doi:10.1016/j.clineuro.2009.10.011.

42. Heo, K.; Rhee, Y.; Lee, H.W.; Lee, S.A.; Shin, D.J.; Kim, W.J.; Song, H.K.; Song, K.; Lee, B.I. The effect of topiramate monotherapy on bone mineral density and markers of bone and mineral metabolism in premenopausal women with epilepsy. Epilepsia. 2011, 52, 1884-1889, doi:10.1111/j.1528-1167.2011.03131.x.

43. Andress, D.L.; Ozuna, J.; Tirschwell, D.; Grande, L.; Johnson, M.; Jacobson, A.F.; Spain, W. Antiepileptic drug-induced bone loss in young male patients who have seizures. Arch Neurol. 2002, 59, 781-786, doi:10.1001/archneur.59.5.781.

44. Krishnamoorthy, G.; Karande, S.; Ahire, N.; Mathew, L.; Kulkarni, M. Bone metabolism alteration on antiepileptic drug therapy. Indian J Pediatr. 2009, 76, 377-383, doi:10.1007/s12098-009-0005-5.

45. Boluk, A.; Guzelipek, M.; Savli, H.; Temel, I.; Ozisik, H.I.; Kaygusuz, A. The effect of valproate on bone mineral density in adult epileptic patients. Pharmacol Res. 2004, 50, 93-97, doi:10.1016/j.phrs.2003.11.011.

46. Fan, H.C.; Lee, H.S.; Chang, K.P.; Lee, Y.Y.; Lai, H.C.; Hung, P.L.; Lee, H.F.; Chi, C.S. The Impact of Anti-Epileptic Drugs on Growth and Bone Metabolism. Int J Mol Sci. 2016, 17, 1242, doi:10.3390/ijms17081242.

47. Lee, R.H.; Lyles, K.W.; Colón-Emeric, C. A review of the effect of anticonvulsant medications on bone mineral density and fracture risk. Am J Geriatr Pharmacother. 2010, 8, 34-46, doi:10.1016/j.amjopharm.2010.02.003.

48. Rowan, A.J., Ramsay, R.E.; Collins, J.F.; Pryor, F.; Boardman, K.D.; Uthman, B.M.; Spitz, M.; Frederick, T.; Towne, A.; Carter, G.S.; Marks, W.; Felicetta, J.; Tomyanovich, M.L.; VA Cooperative Study 428 Group. New onset geriatric epilepsy: a randomized study of gabapentin, lamotrigine, and carbamazepine. Neurology. 2005, 64, 1868-1873, doi: 10.1212/01.WNL.0000167384.68207.3E.

49. Chandrasekaran, V.; Pasco, J.A.; Stuart, A.L.; Brennan-Olsen, S.L.; Berk, M.; Hodge, J.M.; Samarasinghe, R.M.; Williams, L.J. Anticonvulsant use and bone health in a population-based study of men and women: cross-sectional data from the Geelong Osteoporosis Study. BMC Musculoskelet Disord. 2021, 22, 172, doi:10.1186/s12891-021-04042-w.

50. Ensrud, K.E.; Blackwell, T.L.; Mangione, C.M.; Bowman, P.J.; Whooley, M.A.; Bauer, D.C.; Schwartz, A.V.; Hanlon, J.T.; Nevitt, M.C. Central nervous system-active medications and risk for falls in older women. J Am Geriatr Soc. 2002, 50, 1629- 1637, doi:10.1046/j.1532-5415.2002.50453.

51. Thomas, M.K.; Lloyd-Jones, D.M.; Thadhani, R.I.; Shaw, A.C.; Deraska, D.J.; Kitch, B.T.; Vamvakas, E.C.; Dick, I.M.; Prince, R.L.; Finkelstein, J.S. Hypovitaminosis D in medical inpatients. N Engl J Med. 1998, 338, 777-783, doi:10.1056/NEJM199803193381201.

52. Wysoczańska-Klaczyńska, A.; Ślęzak, A.; Hetman, M.; Barg, E. The impact of VDR gene polymorphisms on obesity, metabolic changes, bone mass disorders and neoplastic processes. Pediatr Endocrinol Diabetes Metab. 2018, 24, 96-105, doi:10.18544/PEDM-24.02.0108.

53. Abouzid, M.; Karazniewicz-Lada, M.; Glowka, F. Genetic Determinants of Vitamin D-Related Disorders; Focus on Vitamin D Receptor. Curr Drug Metab. 2018, 19, 1042-1052, doi: 10.2174/1389200219666180723143552.

54. Bell, N.H.; Morrison, N.A.; Nguyen, T.V.; Eisman, J.; Hollis, B.W. ApaI polymorphisms of the vitamin D receptor predict bone density of the lumbar spine and not racial difference in bone density in young men. J Lab Clin Med. 2001, 137, 133– 140, doi:10.1067/mlc.2001.112095.

55. Dundar, U.; Solak, M.; Kavuncu, V.; Ozdemir, M.; Cakir, T.; Yildiz, H.; Evcik, D. Evidence of association of vitamin D receptor Apa I gene polymorphism with bone mineral density in postmenopausal women with osteoporosis. Clin Rheumatol. 2009, 28, 1187–1191, doi:10.1007/s10067-009-1220-1/

56. Choi, Y.M.; Jun, J.K.; Choe, J.; Hwang, D.; Park, S.H.; Ku, S.Y.; Kang, D.; Kim, J.G.; Moon, S.Y.; Lee, J.Y. Association of the vitamin D receptor start codon polymorphism (FokI) with bone mineral density in postmenopausal Korean women. J Hum Genet. 2000, 45, 280–283, doi:10.1007/s100380070016.

57. Zambrano-Morales, M.; Borjas, L.; Fernández, E.; Zabala, W.; de Romero, P.; Pineda, L.; Morales-Machín, A. Association of the vitamin D receptor gene BBAAtt haplotype with osteoporosis in post-menopausic women. Invest Clin. 2008, 49, 29–38

58. Zhao, J.; Zhou, X.; Meng, X.; Liu, G.; Xing, X.; Liu, H.; Xu, L. Polymorphisms of vitamin D receptor gene and its association with bone mineral density and osteocalcin in Chinese. Chin Med J. 1997, 110, 366–371.

59. Wu, J.; Shang, D.P.; Yang, S.; Fu, D.P.; Ling, H.Y.; Hou, S.S.; Lu, J.M Association between the vitamin D receptor gene polymorphism and osteoporosis. Biomed Rep. 2016, 5, 233-236, doi:10.3892/br.2016.697.

60. Marozik, P.; Rudenka, A.; Kobets, K.; Rudenka, E .Vitamin D Status, Bone Mineral Density, and VDR Gene Polymorphism in a Cohort of Belarusian Postmenopausal Women. Nutrients, 2021, 13, 837, doi:10.3390/nu13030837.

61. Taha, I.M.; Allah, A.M.A.; El Tarhouny, S. Association of Vitamin D Gene Polymorphisms and Bone Mineral Density in Healthy young Saudi Females. Curr Mol Med. 2019, 19, 196-205, doi:10.2174/1566524019666190409122155.

62. Ahmad, I.; Jafar, T.; Mahdi, F.; Ameta, K.; Arshad, M.; Das, S.K.; Waliullah, S.; Rizvi, I.; Mahdi, A.A Association of vitamin D receptor gene polymorphism (TaqI and Apa1) with bone mineral density in North Indian postmenopausal women.. Gene, 2018, 659, 123-127, doi:10.1016/j.gene.2018.03.052.

63. Abdurahman, A.A.; Khorrami-Nezhad, L.; Mirzaei, K.Vitamin D (FokI) Receptor Gene Polymorphism is associated with Vitamin D Deficiency and Chronic Musculoskeletal Pain. A meta-analysis. Int J Vitam Nutr Res. 2017, 87, 219-232, doi:10.1024/0300-9831/a000569.

64. Salimipour, H.; Kazerooni, S.; Seyedabadi, M.; Nabipour, I.; Nemati, R.; Iranpour, D.; Assadi, M. Antiepileptic treatment is associated with bone loss: difference in drug type and region of interest. J Nucl Med Technol. 2013, 41, 208-211, doi: 10.2967/jnmt.113.124685.

65. NICE (The National Institute for Health and Care Excellence), Available online: http://www.nice.org.uk/nicemedia/pdf/cg020fullguideline.pdf (accessed on 27 October 2004)

66. Nicholas, J.M.; Ridsdale, L.; Richardson, M.P.; Grieve, A.P.; Gulliford, M.C. Fracture risk with use of liver enzyme inducing antiepileptic drugs in people with active epilepsy: cohort study using the general practice research database. Seizure. 2013, 22, 37-42, doi:10.1016/j.seizure.2012.10.002.

67. Antiepileptics: adverse effects on bone, Available from: http://www.mhra.gov.uk/Safetyinformation/DrugSafetyUpdate/CON087970 (accessed on 11 December 2014)

68. Drezner, M.K. Treatment of anticonvulsant drug-induced bone disease. Epilepsy Behav. 2004, 5, 41-47, doi:10.1016/j.yebeh.2003.11.028.

69. Lazzari, A.A.; Dussault, P.M.; Thakore-James, M.; Gagnon, D.; Baker, E.; Davis, S.A.; Houranieh, A.M. Prevention of bone loss and vertebral fractures in patients with chronic epilepsy--antiepileptic drug and osteoporosis prevention trial. Epilepsia. 2013, 54, 1997-2004, doi: 10.1111/epi.12351.

70. Gao, Y.; Patil, S.; Jia, J. The Development of Molecular Biology of Osteoporosis. Int. J. Mol. Sci. 2021, 22, 8182, https://doi.org/10.3390/ijms22158182.

71. Artemiadis, A.K.; Lambrinoudaki, I.; Voskou, P.; Tsivgoulis, G.; Safouris, A.; Bougea, A.; Giannopoulos, S.; Gatzonis, S.; Triantafyllou, N. Preliminary evidence for gender effects of levetiracetam monotherapy duration on bone health of patients with epilepsy. Epilepsy Behav. 2016, 55, 84-86, doi:10.1016/j.yebeh.2015.12.025.

72. Pack, A.M.; Morrell, M,J. Epilepsy and bone health in adults. Epilepsy Behav. 2004, 2, 24-29., doi:10.1016/j.yebeh.2003.11.029.

73. Beniczky, S.A.; Viken, J.; Jensen, L.T.; Andersen, N.B. Bone mineral density in adult patients treated with various antiepileptic drugs. Seizure. 2012, 21, 471-472, doi:10.1016/j.seizure.2012.04.002.

74. Guo, Y.; Lin, Z.; Huang, Y.; Yu, L. Effects of valproate, lamotrigine, and levetiracetam monotherapy on bone health in newly diagnosed adult patients with epilepsy. Epilepsy Behav. 2020, 113, 107489, doi:10.1016/j.yebeh.2020.107489.

75. Svalheim, S.; Sveberg, L.; Mochol, M.; Taubøll, E. Interactions between antiepileptic drugs and hormones. Seizure. 2015, 28, 12-17, doi:10.1016/j.seizure.2015.02.022.

76. Nakken, K.O.; Taubøll, E. Bone loss associated with use of antiepileptic drugs. Expert Opin Drug Saf. 2010, 9, 561-571, doi: 10.1517/14740331003636475.

77. Guo, C.Y.; Ronen, G.M.; Atkinson, S.A. Long-term valproate and lamotrigine treatment may be a marker for reduced growth and bone mass in children with epilepsy. Epilepsia. 2001, 42, 1141-1147, doi:10.1046/j.1528-1157.2001.416800.x.

78. Kanda,J.; Izumo,N.; Kobayashi, Y.; Onodera, K.; Shimakura, T.; Yamamoto, N.; Takahashi, H.E.; Wakabayashi, H. Effects of the Antiepileptic Drugs Phenytoin, Gabapentin, and Levetiracetam on Bone Strength, Bone Mass, and Bone Turnover in Rats. Biological and Pharmaceutical Bulletin, 2017, 40, 1934-1940, doi:10.1248/bpb.b17-00482.

79. Parveen, B.; Tiwari, A.K.; Jain, M.; Pal, S.; Chattopadhyay, N.; Tripathi, M.; Vohora, D. The anti-epileptic drugs valproate, carbamazepine and levetiracetam cause bone loss and modulate Wnt inhibitors in normal and ovariectomised rats. Bone. 2018, 113, 57-67, doi:10.1016/j.bone.2018.05.011.

80. Hodges, S.L.; Lugo, J,N. Wnt/β-catenin signaling as a potential target for novel epilepsy therapies. Epilepsy Res. 2018, 146, 9-16, doi: 10.1016/j.eplepsyres.2018.07.002.

81. Zhao,Y.; Ren, J.; Hillier,J; Lu, W.; Jones, E.Y. Antiepileptic Drug Carbamazepine Binds to a Novel Pocket on the Wnt Receptor Frizzled-8. J. Med. Chem. 2020, 63, 3252–3260, doi:10.1021/acs.jmedchem.9b02020.

82. Hulisz, D. Drug-Induced Osteoporosis. Effects of Medications on Bone Density. US Pharm. 2006, 12, HS3-HS6.

83. Wang, W.; Gao, Y.; Zheng, W.; Li, M.; Zheng, X. Phenobarbital inhibits osteoclast differentiation and function through NF-κB and MAPKs signaling pathway. International Immunopharmacology, 2019, 69, 118-125, doi:10.1016/j.intimp.2019.01.033.bhjkl.

84. Verrotti,A.; Coppola, G.; Parisi, P.; Mohn, A.; Chiarelli, F. Bone and calcium metabolism and antiepileptic drugs. Clin Neurol Neurosurg. 2010, 112, 1-10, doi:10.1016/j.clineuro.2009.10.011.

85. Verrotti, A.; Matricardi, S.; Manco, R.; Chiarelli, F. Bone metabolism and vitamin D levels in carbamazepine-treated patients. Epilepsia. 2006, 47, 1586; author reply 1586-7, doi:10.1111/j.1528-1167.2006.00843_2.x.

86. Tjellesen, L. Metabolism and action of vitamin D in epileptic patients on anticonvulsive treatment and healthy adults. Dan Med Bull. 1994, 41, 139-150.

87. Pack, A.M. The Association Between Antiepileptic Drugs and Bone Disease. Epilepsy Curr. 2003, 3, 91-95,. doi: 10.1046/j.1535-7597.2003.03306.x.

88. Pitetzisa, D.A.; Spiliotia, M.G.; Yovosb, J.G.; Yavropoulou, M.P. The effect of VPA on bone: From clinical studies to cell cultures—The molecular mechanisms revisited. Seizure, 2017, 48, 36-43.

89. Polzonetti, V.; Pucciarelli, S.; Vincenzetti, S.; Polidori, P. Dietary Intake of Vitamin D from Dairy Products Reduces the Risk of Osteoporosis. Nutrients, 2020, 12, 1743, doi:10.3390/nu12061743.

90. Cheng, C.; Wentworth, K.; Shoback, D.M. New Frontiers in Osteoporosis Therapy. Annu Rev Med. 2020, 71, 277-288, doi: 10.1146/annurev-med-052218-020620.

91. Rosen, H.N. Bisphosphonate therapy for the treatment of osteoporosis. Available online: https://www.uptodate.com/contents/bisphosphonate-therapy-for-the-treatment-of-osteoporosis (accessed on July 2021)

92. Li, S.S.; He, S.H.; Xie, P.Y.; Li, W.; Zhang, X.X.; Li, T.F.; Li, D.F Recent Progresses in the Treatment of Osteoporosis. Front. Pharmacol. 2021, 12, 717065, doi:10.3389/fphar.2021.717065.

93. International osteoporosis foundation: VITAMIN D RECOMMENDATIONS, Available from: https://www.osteoporosis.foundation/vitamin-d-recommendations#ref_bottom_9 (accessed on 2021).

94. Casado, E.; Quesada, J.M.; Naves, M.; Peris, P.; Jódar, E.; Giner, M.; Neyro, J.L.; Del Pino, J.; Sosa, M.; De Paz, H.D.;BlanchRubió, J. SEIOMM recommendations on the prevention and treatment of vitamin D deficiency. Rev Osteoporos Metab Miner. 2021, 13, 84-97, doi:10.4321/S1889-836X2021000200007.


For citation:


Dontseva E.A., Trefilova V.V., Popova T.E., Petrova M.M., Al-Zamil M. Perspectives of personalized approach to prevention and treatment of anticonvulsant-induced osteoporosis via action on vitamin D exchange and VDR expression. Personalized Psychiatry and Neurology. 2021;1(2):46-62. https://doi.org/10.52667/2712-9179-2021-1-2-46-62

Views: 54


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2712-9179 (Online)