Candidate genes associated with athletes' skeletal muscle functions regulation
https://doi.org/10.52667/2712-9179-2021-1-2-83-94
Abstract
It is generally recognized that an elite athlete's status is a multifactorial phenotype depending on many environmental and genetic factors. Variations in the sequence of nucleotides in deoxyribonucleic acid (DNA), in particular, single-nucleotide variants (SNVs) act as key internal factors associated with achieving high results in sports. The determination of specific individuals' genetic characteristics allows us to identify athletes who have the greatest genetically determined potential for certain sports that require speed, strength or endurance manifestation. Of course, peculiarities of the structure and function of skeletal muscles are among the most important characteristics in sports results context, in sports associated with the development of power / strength or endurance phenotypes. The composition and function of skeletal muscles are controlled by many different genes, and their SNVs can serve as strength or endurance athletes' status biomarkers. (1) Background: to conduct a thematic review of candidate genes studies and their single-nucleotide variants (SNVs) associated with the functioning of skeletal muscles in athletes. (2) Methods: A search for articles for the period from 2010 to 2020 was conducted in the databases SCOPUS, Web of Science, Google Calendar, Clinical keys, PubMed, e-LIBRARY using keywords and their combinations; (3) Conclusions: The identification of genetic biomarkers associated with muscular system regulation can help neurologists, sports doctors and coaches in developing personalized strategies for selecting children, adolescents and young adults for endurance, strength and speed sports (for example, running short, medium or long distances). Such a personalized approach will increase sports performance and reduce the risk of sports injuries of the musculoskeletal system.
About the Authors
O. V. BalberovaRussian Federation
Olga V. Balberova
454091 Chelyabinsk
E. V. Bykov
Russian Federation
Evgeniy V. Bykov
454091 Chelyabinsk
G. V. Medvedev
Russian Federation
German V. Medvedev
195427 Saint-Petersburg
References
1. Balberova O. V., Sidorkina E. G., Koshkina K. S., Plachy J. K., Bykov E. V. Model characteristics of competition performance in terms of athletes’ functional fitness. Science for Education Today. 2021; 11(3): 161–176. doi.org/10.15293/2658-6762.2103.09
2. Maciejewska-Skrendo A., Cięszczyk P., Chycki J., Sawczuk M., Smółka W. Genetic Markers Associated with Power Athlete Status. J Hum Kinet. 2019; 68:17-36. doi: 10.2478/hukin-2019-0053. PMID: 31531130; PMCID: PMC6724599
3. Balberova, O.V.; Bykov, E.V.; Shnayder, N.A.; Petrova, M.M.; Gavrilyuk, O.A.; Kaskaeva, D.S.; Soloveva, I.A.; Petrov, K.V.; Mozheyko, E.Y.; Medvedev, G.V.; et al. The “Angiogenic Switch” and Functional Resources in Cyclic Sports Athletes. Int. J. Mol. Sci. 2021, 22: 6496. https://doi.org/10.3390/ijms22126496
4. Balberova O.V. Candidate genes and single-nucleotide gene variants associated with muscle and tendon injuries in cyclic sports athletes. Personalized Psychiatry and Neurology. 2021; 1(1): 64-72. doi.org/10.52667/2712-9179-2021-1-1-64-72
5. https://www.genecards.org/cgi-bin/carddisp.pl?gene=AMPD1
6. https://www.genecards.org/cgi-bin/carddisp.pl?gene=MSTN
7. https://www.genecards.org/cgi-bin/carddisp.pl?gene=COMT
8. https://www.genecards.org/cgi-bin/carddisp.pl?gene=IGF-II
9. https://www.gtexportal.org/home/gene/ACTN3
10. https://www.gtexportal.org/home/gene/MSTN
11. https://www.gtexportal.org/home/gene/COMT
12. https://www.gtexportal.org/home/gene/ENSG00000167244
13. Talbot J., Maves L. Skeletal muscle fiber type: using insights from muscle developmental biology to dissect targets for susceptibility and resistance to muscle disease. Wiley Interdiscip Rev Dev Biol. 2016; 5(4): 518-34. doi: 10.1002/wdev.230. Epub 2016 May 19. PMID: 27199166
14. Garton F.C., North K.N. The Effect of Heterozygosity for the ACTN3 Null Allele on Human Muscle Performance. Med Sci Sports Exerc. 2016; 48(3): 509-520. doi: 10.1249/MSS.0000000000000784. PMID: 26429734
15. Ahmetov I.I., Donnikov A.E., Trofimov D.Y. Actn3 genotype is associated with testosterone levels of athletes. Biol Sport. 2014; 31(2): 105-8. doi: 10.5604/20831862.1096046. Epub 2014 Apr 5. PMID: 24899773; PMCID: PMC4042656
16. Vincent B., De Bock K., Ramaekers M., Van den Eede E., Van Leemputte M., Hespel P., Thomis M.A. ACTN3 (R577X) genotype is associated with fiber type distribution. Physiol Genomics. 2007; 32(1): 58-63. doi: 10.1152/physiolgenomics.00173.2007
17. Ahmetov I.I., Donnikov A.E., Trofimov D.Y. Actn3 genotype is associated with testosterone levels of athletes. Biol Sport. 2014; 31(2): 105-8. doi: 10.5604/20831862.1096046. Epub 2014 Apr 5. PMID: 24899773; PMCID: PMC4042656
18. Ahmetov I.I., Druzhevskaya A.M., Lyubaeva E.V., Popov D.V., Vinogradova O.L., Williams A.G. The dependence of preferred competitive racing distance on muscle fibre type composition and ACTN3 genotype in speed skaters. Exp Physiol. 2011; 96(12): 1302-10. doi: 10.1113/expphysiol.2011.060293. Epub 2011 Sep 19. PMID: 21930675
19. Quinlan K.G., Seto J.T., Turner N., Vandebrouck A., Floetenmeyer M., Macarthur D.G., Raftery J.M., Lek M., Yang N., Parton R.G., Cooney G.J., North K.N. Alpha-actinin-3 deficiency results in reduced glycogen phosphorylase activity and altered calcium handling in skeletal muscle. Hum Mol Genet. 2010; 19(7): 1335-1346. doi: 10.1093/hmg/ddq010. Epub 2010 Jan 20. PMID: 20089531
20. Zempo H., Tanabe K., Murakami H., Iemitsu M., Maeda S., Kuno S. ACTN3 polymorphism affects thigh muscle area. Int J Sports Med. 2010; 31(2): 138-42. doi: 10.1055/s-0029-1242808. Epub 2009 Dec 17. PMID: 20222007
21. Eynon N., Sagiv M., Meckel Y., Duarte J.A., Alves A.J., Yamin C., Sagiv M., Goldhammer E., Oliveira J. NRF2 intron 3 A/G polymorphism is associated with endurance athletes' status. J Appl Physiol. 2009; 107(1): 76-9. doi: 10.1152/japplphysiol.00310.2009
22. Moran C.N., Yang N., Bailey M.E., Tsiokanos A., Jamurtas A., MacArthur D.G., North K., Pitsiladis Y.P., Wilson R.H. Association analysis of the ACTN3 R577X polymorphism and complex quantitative body composition and performance phenotypes in adolescent Greeks. Eur J Hum Genet. 2007; 15(1): 88-93. doi: 10.1038/sj.ejhg.5201724
23. Alfred T., Ben-Shlomo Y., Cooper R., Hardy R., Cooper C., Deary I.J., Gunnell D., Harris S.E., Kumari M., Martin R.M., Moran C.N., Pitsiladis Y.P., Ring S.M., Sayer A.A., Smith G.D., Starr J.M., Kuh D., Day I.N; HALCyon study team. ACTN3 genotype, athletic status, and life course physical capability: meta-analysis of the published literature and findings from nine studies. Hum Mutat. 2011; 32(9): 1008-1018. doi: 10.1002/humu.21526. Epub 2011 Jul 20. PMID: 21542061; PMCID: PMC3174315.
24. Ma F., Yang Y., Li X., Zhou F., Gao C., Li M., Gao L. The association of sport performance with ACE and ACTN3 genetic polymorphisms: a systematic review and meta-analysis. PLoS One. 2013; 8(1): e54685. doi: 10.1371/journal.pone.0054685. Epub 2013 Jan 24. PMID: 23358679; PMCID: PMC3554644
25. Grade C.V.C., Mantovani C.S., Alvares L.E. Myostatin gene promoter: structure, conservation and importance as a target for muscle modulation. J Anim Sci Biotechnol. 2019; 10:32. doi: 10.1186/s40104-019-0338-5. PMID: 31044074; PMCID: PMC6477727
26. Filonzi L., Franchini N., Vaghi M., Chiesa S., Marzano F.N. The potential role of myostatin and neurotransmission genes in elite sport performances. J. Biosci. 2015; 40(3): 531-537. doi: 10.1007/s12038-015-9542-4. PMID: 26333399
27. Lee J.H., Jun H.S. Role of Myokines in Regulating Skeletal Muscle Mass and Function. Front Physiol. 2019; 10: 42. doi: 10.3389/fphys.2019.00042. PMID: 30761018; PMCID: PMC6363662
28. Ginevičienė V., Jakaitienė A., Pranckevičienė E., Milašius K., Utkus A. Variants in the Myostatin Gene and Physical Performance Phenotype of Elite Athletes. Genes (Basel). 2021;12 (5): 757. doi: 10.3390/genes12050757. PMID: 34067816; PMCID: PMC8157000.
29. Santiago C., Ruiz J.R., Rodríguez-Romo G., Fiuza-Luces C., Yvert T., Gonzalez-Freire M., Gómez-Gallego F., Morán M., Lucia A. The K153R polymorphism in the myostatin gene and muscle power phenotypes in young, non-athletic men. PLoS One. 2011; 6(1): e16323. doi: 10.1371/journal.pone.0016323. PMID: 21283721; PMCID: PMC3024427
30. Li X., Wang S.J., Tan S.C., Chew P.L., Liu L., Wang L., Wen L., Ma L. The A55T and K153R polymorphisms of MSTN gene are associated with the strength training-induced muscle hypertrophy among Han Chinese men. J. Sports Sci. 2014; 32(9): 883-891. doi: 10.1080/02640414.2013.865252. Epub 2014 Jan 30. PMID: 24479661
31. Döring F., Onur S., Kürbitz C., Boulay M.R., Pérusse L., Rankinen T., Rauramaa R., Wolfarth B., Bouchard C. Single nucleotide polymorphisms in the myostatin (MSTN) and muscle creatine kinase (CKM) genes are not associated with elite endurance performance. Scand J. Med Sci Sports. 2011; 21(6): 841-5. doi: 10.1111/j.1600-0838.2010.01131.x. Epub 2010 Jun 1. PMID: 20536908
32. Karlowatz R.J., Scharhag J., Rahnenführer J., Schneider U., Jakob E., Kindermann W., Zang K.D. Polymorphisms in the IGF1 signalling pathway including the myostatin gene are associated with left ventricular mass in male athletes. Br. J. Sports Med. 2011; 45(1): 36-41. doi: 10.1136/bjsm.2008.050567. Epub 2009 Jan 9. PMID: 19136503.
33. Zhang Z.L., He J.W., Qin Y.J., Hu Y.Q., Li M., Zhang H., Hu W.W., Liu Y.J., Gu J.M. Association between myostatin gene polymorphisms and peak BMD variation in Chinese nuclear families. Osteoporos Int. 2008; 19(1): 39-47. doi: 10.1007/s00198- 007-0435-8. Epub 2007 Aug 17. PMID: 17703271
34. Ben-Zaken S., Meckel Y., Nemet D., Rabinovich M., Kassem E., Eliakim A. Frequency of the MSTN Lys(K)-153Arg(R) polymorphism among track & field athletes and swimmers. Growth Horm IGF Res. 2015; 25(4): 196-200. doi: 10.1016/j.ghir.2015.04.001
35. Kostek M.A., Angelopoulos T.J., Clarkson P.M., Gordon P.M., Moyna N.M., Visich P.S., Zoeller R.F., Price T.B., Seip R.L., Thompson P.D., Devaney J.M., Gordish-Dressman H., Hoffman E.P., Pescatello L.S. Myostatin and Follistatin Polymorphisms Interact with Muscle Phenotypes and Ethnicity, Medicine & Science in Sports & Exercise. 2009; 41(5): 1063-1071. doi: 10.1249/MSS.0b013e3181930337
36. Noohi F., Boyden N.B., Kwak Y., Humfleet J., Burke D.T., Müller M.L., Bohnen N.I., Seidler R.D. Association of COMT val158met and DRD2 G>T genetic polymorphisms with individual differences in motor learning and performance in female young adults. J Neurophysiol. 2014; 111(3): 628-40. doi: 10.1152/jn.00457.2013. Epub 2013 Nov 13. PMID: 24225542; PMCID: PMC3921405
37. Abe D., Dоi Н., Asai T., Kimura M., Wada T., Takahashi Y., Matsumoto T., Shinohara K. Association between COMT Val158Met polymorphism and competition results of competitive swimmers. J. Sports Sci. 2018; 36(4): 393-397. doi: 10.1080/02640414.2017.1309058. Epub 2017 Apr 3. PMID: 28368213
38. Ben-Zaken S., Meckel Y., Nemet D., Eliakim A. High prevalence of the IGF2 rs680 GG pol-ymorphism among top-level sprinters and jumpers. Growth Horm IGF Res. 2017; 37:26-30. doi: 10.1016/j.ghir.2017.10.001. Epub 2017 Oct 3. PMID: 29107196
39. Puthucheary Z., Skipworth J.R., Rawal J., Loosemore M., Van Someren K., Montgomery H.E. Genetic influences in sport and physical performance. Sports Med. 2011; 41(10): 845-59. doi: 10.2165/11593200-000000000-00000. PMID: 21923202
40. Chao W., D'Amore P.A. IGF2: epigenetic regulation and role in development and disease. Cytokine Growth Factor Rev. 2008; 19(2): 111-120. doi: 10.1016/j.cytogfr.2008.01.005. Epub 2008 Mar 4. PMID: 18308616; PMCID: PMC2314671
41. Sayer A.A., Syddall H., O'Dell S.D., Chen X.H., Briggs P.J., Briggs R., Day I.N., Cooper C. Polymorphism of the IGF2 gene, birth weight and grip strength in adult men. Age Ageing. 2002; 31(6): 468-70. doi: 10.1093/ageing/31.6.468. PMID: 12446294
42. Itaka T., Agemizu K., Aruga S., Machida S. G Allele of the IGF2 ApaI Polymorphism Is Associated With Judo Status. J Strength Cond Res. 2016; 30(7): 2043-8. doi: 10.1519/JSC.0000000000001300. PMID: 26677828.
Review
For citations:
Balberova O.V., Bykov E.V., Medvedev G.V. Candidate genes associated with athletes' skeletal muscle functions regulation. Personalized Psychiatry and Neurology. 2021;1(2):83-94. https://doi.org/10.52667/2712-9179-2021-1-2-83-94