Unstable Genomes in the Human Brain: What Does It Mean for Personalized Psychiatry and Neurology
https://doi.org/10.52667/2712-9179-2025-5-4-16-25
Abstract
Despite efforts to uncover genome variability confined to the human brain, genome composition of neurons remains a matter of conjecture in health and disease. Still, somatic neurogenomics continuously gives further insights into understanding of mechanisms for devastative psychiatric and neurological disorders. For instance, since somatic genetic mosaicism and genome instability affecting the brain dynamically change during the ontogeny, these phenomena are able to shape individual features of disease manifestation, course, and outcome. This review is dedicated to the involvement of genome instability in the pathogenesis of brain diseases. Genome/chromosome instability and somatic mosaicism mediating brain dysfunction may produce specific (personalized) manifestations and course of a brain disorder via genetic-environmental interactions. Consequently, genome instability in the brain has to be taken into account during the development of personalized therapeutic interventions in a wide spectrum of psychiatric and neurological disorders. Among the latters, the most striking are schizophrenia, Alzheimer’s diseases, and chromosome instability syndromes. Still, neurodevelopmental diseases (e.g., autism and intellectual disability) are to be investigated in the context of brain-specific genome instability.
Keywords
About the Authors
Ivan Y. IourovRussian Federation
115522 Moscow; 117513 Moscow; 125993 Moscow
Svetlana G. Vorsanova
Russian Federation
115522 Moscow; 117513 Moscow
Elizaveta D. Pankratova
Russian Federation
115522 Moscow
Yuri B. Yurov
Russian Federation
115522 Moscow; 117513 Moscow
Yulia A. Chaika
Russian Federation
115522 Moscow
References
1. Iourov, I.Y.; Vorsanova, S.G.; Yurov, Y.B. Chromosomal variation in mammalian neuronal cells: known facts and attrac-tive hypotheses. Int Rev Cytol. 2006; 249:143-91. https://doi.org/10.1016/S0074-7696(06)49003-3.
2. Bushman, D.M.; Chun, J. The genomically mosaic brain: aneuploidy and more in neural diversity and disease. Semin Cell Dev Biol. 2013; 24(4):357-69. https://doi.org/10.1016/j.semcdb.2013.02.003.
3. Iourov, I.Y.; Vorsanova, S.G.; Kurinnaia, O.S.; Kutsev, S.I.; Yurov, Y.B. Somatic mosaicism in the diseased brain. Mol Cytogenet. 2022; 15(1):45. https://doi.org/10.1186/s13039-022-00624-y.
4. D'Gama. A.M.; Walsh, C.A. Somatic mosaicism and neurodevelopmental disease. Nat Neurosci. 2018; 21(11):1504-1514. https://doi.org/ 10.1038/s41593-018-0257-3.
5. Miller, M.B.; Reed, H.C.; Walsh, C.A. Brain Somatic Mutation in Aging and Alzheimer's Disease. Annu Rev Genomics Hum Genet. 2021; 22:239-256. https://doi.org/10.1146/annurev-genom-121520-081242.
6. Albert, O.; Sun, S.; Huttner, A.; Zhang, Z.; Suh, Y.; Campisi, J.; Vijg, J.; Montagna, C. Chromosome instability and aneu-ploidy in the mammalian brain. Chromosome Res. 2023; 31(4):32. https://doi.org/10.1007/s10577-023-09740-w.
7. Iourov, I.Y.; Yurov, Y.B.; Vorsanova, S.G.; Kutsev, S.I. Chromosome Instability, Aging and Brain Diseases. Cells. 2021; 10(5):1256. https://doi.org/10.3390/cells10051256.
8. Kirsch-Volders, M.; Fenech, M. Towards prevention of aneuploidy-associated cellular senescence and aging: more ques-tions than answers? Mutat Res Rev Mutat Res. 2023; 792:108474. https://doi.org/10.1016/j.mrrev.2023.108474.
9. Liu, Y; Tan, Y.; Zhang, Z.; Yi M, Zhu L, Peng W. The interaction between ageing and Alzheimer's disease: insights from the hallmarks of ageing. Transl Neurodegener. 2024; 13(1):7. https://doi.org/10.1186/s40035-024-00397-x.
10. Iourov, I.Y.; Vorsanova, S.G.; Kurinnaia, O.S.; Zelenova, M.A.; Vasin, K.S.; Yurov, Y.B. Causes and Consequences of Genome Instability in Psychiatric and Neurodegenerative Diseases. Mol Biol (Mosk). 2021; 55(1):42-53.
11. Ly, P.; Brunner, S.F.; Shoshani, O.; Kim, D.H.; Lan, W.; Pyntikova, T.; Flanagan, A.M.; Behjati, S.; Page, D.C.; Campbell, P.J.; Cleveland, D.W. Chromosome segregation errors generate a diverse spectrum of simple and complex genomic rear-rangements. Nat Genet. 2019; 51(4):705-715. https://doi.org/10.1038/s41588-019-0360-8.
12. Iourov, I.Y.; Vorsanova, S.G.; Yurov, Y.B.; Zelenova, M.A.; Kurinnaia, O.S.; Vasin, K.S.; Kutsev, S.I. The Cytogenomic "Theory of Everything": Chromohelkosis May Underlie Chromosomal Instability and Mosaicism in Disease and Aging. Int J Mol Sci. 2020; 21(21):8328. https://doi.org/10.3390/ijms21218328.
13. Rohrback, S.; Siddoway, B.; Liu, C.S.; Chun, J. Genomic mosaicism in the developing and adult brain. Dev Neurobiol. 2018; 78(11):1026-1048. https://doi.org/10.1002/dneu.22626.
14. Iourov, I.Y.; Vorsanova, S.G.; Yurov,Y.B.; Kutsev, S.I. Ontogenetic and Pathogenetic Views on Somatic Chromosomal Mosaicism. Genes (Basel). 2019; 10(5):379. https://doi.org/10.3390/genes10050379.
15. Waldvogel, S.M.; Posey, J.E.; Goodell, M.A. Human embryonic genetic mosaicism and its effects on development and disease. Nat Rev Genet. 2024; 25(10):698-714. https://doi.org/10.1038/s41576-024-00715-z.
16. Ihara, D.; Rasli, N.R.; Katsuyama, Y. How do neurons live long and healthy? The mechanism of neuronal genome integrity. Front Neurosci. 2025; 19:1552790. https://doi.org/10.3389/fnins.2025.1552790.
17. Tiganov, A.S.; Iurov, Iu.B.; Vorsanova, S.G.; Iurov, I.Iu. Genomic instability in the brain: etiology, pathogenesis and new biological markers of psychiatric disorders. Vestn Ross Akad Med Nauk. 2012; (9):45-53.
18. Coppedè, F.; Migliore, L. DNA damage in neurodegenerative diseases. Mutat Res. 2015; 776:84-97. https://doi.org/10.1016/j.mrfmmm.2014.11.010.
19. Leija-Salazar, M.; Piette, C.; Proukakis, C. Review: Somatic mutations in neurodegeneration. Neuropathol Appl Neurobiol. 2018; 44(3):267-285.
20. Zhang, L.; Vijg, J. Somatic mutagenesis in Mammals and its implications for human disease and aging. Annu Rev Genet. 2018; 52:397-419. https://doi.org/10.1146/annurev-genet-120417-031501.
21. Yurov, Y.B.; Vorsanova, S.G.; Demidova, I.A.; Kolotii, A.D.; Soloviev, I.V.; Iourov, I.Y. Mosaic brain aneuploidy in mental illnesses: An association of low-level post-zygotic awith schizophrenia and comorbid psychiatric disorders. Curr Genomics. 2018; 19(3):163-172.
22. Yurov, Y.B.; Vorsanova, S.G.; Iourov, I.Y. Chromosome instability in the neurodegenerating brain. Front Genet. 2019; 10:892. https://doi.org/10.3389/fgene.2019.00892.
23. Costantino, I.; Nicodemus, J.; Chun, J. Genomic Mosaicism Formed by Somatic Variation in the Aging and Diseased Brain. Genes (Basel). 2021; 12(7):1071. https://doi.org/10.3390/genes12071071.
24. Hu, H.; Lu, X.; Zhong, R.; Liu, X.; Wei, J.; Duan, C.; Sun, N. Role of LINE-1 in the nervous system and neurological dis-orders. Chin Med J (Engl). 2025; https://doi.org/10.1097/CM9.0000000000003891.
25. Iourov, I.Y.; Vorsanova, S.G.; Yurov, Y.B. Somatic cell genomics of brain disorders: a new opportunity to clarify genet-ic-environmental interactions. Cytogenet Genome Res. 2013; 139(3):181-8. https://doi.org/10.1159/000347053.
26. McConnell, M.J.; Moran, J.V.; Abyzov, A.; Akbarian, S.; Bae, T.; Cortes-Ciriano, I.; Erwin, J.A.; Fasching, L.; Flasch, D.A.; Freed, D.; et al. Intersection of diverse neuronal genomes and neuropsychiatric disease: The brain somatic mosaicism network. Science. 2017; 356(6336):eaal1641. https://doi.org/10.1126/science.aal1641.
27. Islam, A.; Shaukat, Z.; Hussain, R.; Ricos, M.G.; Dibbens, L.M.; Gregory, S.L. Aneuploidy is Linked to Neurological Phe-notypes Through Oxidative Stress. J Mol Neurosci. 2024; 74(2):50. https://doi.org/10.1007/s12031-024-02227-1.
28. Vorsanova, S.G.; Yurov, Y.B.; Iourov, I.Y. Dynamic nature of somatic chromosomal mosaicism, genetic-environmental interactions and therapeutic opportunities in disease and aging. Mol Cytogenet. 2020; 13:16. https://doi.org/10.1186/s13039-020-00488-0.
29. Jourdon, A.; Fasching, L.; Scuderi, S.; Abyzov, A.; Vaccarino, F.M. The role of somatic mosaicism in brain disease. Curr Opin Genet Dev. 2020; 65:84-90. https://doi.org/10.1016/j.gde.2020.05.002.
30. Maury, E.A.; Walsh, C.A. Somatic copy number variants in neuropsychiatric disorders. Curr Opin Genet Dev. 2021; 68:9-17. doi: 10.1016/j.gde.2020.12.013.
31. Graham, J.H.; Schlachetzki, J.C.M.; Yang, X.; Breuss, M.W. Genomic mosaicism of the brain: Origin, impact, and utility. Neurosci Bull. 2024; 40(6):759-776. https://doi.org/10.1007/s12264-023-01124-8.
32. Song, M.; Ma, S.; Wang, G.; Wang, Y.; Yang, Z.; Xie, B.; Guo, T.; Huang, X.; Zhang, L. Benchmarking copy number ab-errations inference tools using single-cell multi-omics datasets. Brief Bioinform. 2025; 26(2):bbaf076. https://doi.org/10.1093/bib/bbaf076.
33. Jiang, Z.; Sullivan, P.F.; Li, T.; Zhao, B.; Wang, X.; Luo, T.; Huang, S.; Guan, P.Y.; Chen, J.; Yang, Y.; Stein, J.L.; Li, Y.; Liu, D.; Sun, L.; Zhu, H. The X chromosome's influences on the human brain. Sci Adv. 2025; 11(4):eadq5360. https://doi.org/10.1126/sciadv.adq5360.
34. Vorsanova, S.G.; Yurov, Y.B.; Iourov, I.Y. Neurogenomic pathway of autism spectrum disorders: linking germline and somatic mutations to genetic-environmental interactions. Curr Bioinform. 2017; 12:19–26. https://doi.org/10.2174/1574893611666160606164849.
35. Potter, H.; Chial, H.J.; Caneus, J.; Elos, M.; Elder, N.; Borysov, S.; Granic, A. Chromosome Instability and Mosaic Aneu-ploidy in Neurodegenerative and Neurodevelopmental Disorders. Front Genet. 2019; 10:1092. https://doi.org/10.3389/fgene.2019.01092.
36. D'Gama, A.M. Somatic Mosaicism and Autism Spectrum Disorder. Genes (Basel). 2021; 12(11):1699. https://doi.org/10.3390/genes12111699.
37. Iourov, I.Y.; Vorsanova, S.G.; Kurinnaia, O.S.; Demidova, I.A.; Kolotii, A.D.; Vasin, K.S.; Iuditskaia, M.E.; Karpachev, E.S.; Bobkov, A.F.; Iakushev, N.S.; Chaika, J.A.; Yurov, Y.B. Genome and chromosome instability in children with neurode-velopmental disorders. Medical Genetics. 2025; 24(9):150-152. https://doi.org/10.25557/2073-7998.2025.09.150-152.
38. Pellestor, F. Chromoanagenesis and Beyond: Catastrophic Events Shaping the Genome. Methods Mol Biol. 2025; 2968:65-73. https://doi.org/10.1007/978-1-0716-4750-9_4.
39. Rothblum-Oviatt, C.; Wright, J.; Lefton-Greif, M.A.; McGrath-Morrow, S.A.; Crawford, T.O.; Lederman, H.M. Ataxia telangiectasia: a review. Orphanet J Rare Dis. 2016; 11(1):159. https://doi.org/10.1186/s13023-016-0543-7.
40. Taylor, A.M.R.; Rothblum-Oviatt, C.; Ellis, N.A.; Hickson, I.D.; Meyer, S.; Crawford, T.O.; Smogorzewska, A.; Pietrucha, B.; Weemaes, C.; Stewart, G.S. Chromosome instability syndromes. Nat Rev Dis Primers. 2019; 5(1):64. https://doi.org/10.1038/s41572-019-0113-0.
41. Milán, M. Chromosomal instability in development and disease: Beyond cancer evolution. Curr Opin Cell Biol. 2025; 95:102537. https://doi.org/10.1016/j.ceb.2025.102537
42. Fischer, H.G.; Morawski, M.; Brückner, M.K.; Mittag, A.; Tarnok, A.; Arendt, T. Changes in neuronal DNA content var-iation in the human brain during aging. Aging Cell. 2012; 11(4):628-33. https://doi.org/10.1111/j.1474-9726.2012.00826.x.
43. Bajic, V.; Spremo-Potparevic, B.; Zivkovic, L.; Isenovic, E.R.; Arendt, T. Cohesion and the aneuploid phenotype in Alz-heimer's disease: A tale of genome instability. Neurosci Biobehav Rev. 2015; 55:365-74. https://doi.org/10.1016/j.neubiorev.2015.05.010.
44. Dai, X.; Guo, X. Decoding and rejuvenating human ageing genomes: Lessons from mosaic chromosomal alterations. Ageing Res Rev. 2021; 68:101342. https://doi.org/10.1016/j.arr.2021.101342.
45. Yurov, Y.B.; Vorsanova, S.G.; Iourov, I.Y. FISHing for Chromosome Instability and Aneuploidy in the Alzheimer's Disease Brain. Methods Mol Biol. 2023; 2561:191-204. https://doi.org/10.1007/978-1-0716-2655-9_10.
46. Cavaco, J.; Carvalhal, S. Non-canonical roles of mitotic proteins in cortical neurons. Trends Neurosci. 2025; 48(7):495-507. https://doi.org/10.1016/j.tins.2025.05.010.
47. Costa, T.; Liloia, D. Are current etiological theories of Alzheimer’s disease falsifiable? An epistemological assessment. Front. Aging Neurosci. 2025; 17:1708234. https://doi.org/10.3389/fnagi.2025.1708234.
48. Kirsch-Volders, M.; Fenech, M. Aneuploidy, inflammation and diseases. Mutat Res. 2022; 824:111777. https://doi.org/10.1016/j.mrfmmm.2022.111777.
49. Hintzen, D.C.; Schubert, M.; Soto, M.; Medema, R.H.; Raaijmakers, J.A. Reduction of chromosomal instability and in-flammation is a common aspect of adaptation to aneuploidy. EMBO Rep. 2024; 25(11):5169-5193. https://doi.org/10.1038/s44319-024-00252-0.
50. Chabanon, R.M.; Danlos, F.X.; Ouali, K.; Postel-Vinay, S. Genome instability and crosstalk with the immune response. Genome Med. 2025; 17(1):139. https://doi.org/10.1186/s13073-025-01509-6.
51. Vorsanova, S.G.; Yurov, Y.B.; Soloviev, I.V.; Iourov, I.Y. Molecular cytogenetic diagnosis and somatic genome variations. Curr Genomics. 2010; 11(6):440-6. https://doi.org/10.2174/138920210793176010.
52. Thorpe, J.; Osei-Owusu, I,A,; Avigdor, B.E.; Tupler, R.; Pevsner, J. Mosaicism in Human Health and Disease. Annu Rev Genet. 2020; 54:487-510. https://doi.org/10.1146/annurev-genet-041720-093403.
53. Iourov, I.Y.; Vorsanova, S.G.; Liehr, T.; Yurov, Y.B. Mosaike im ehirn des Menschen. Diagnostische Relevanz in der Zu-kunft. Medizinische Genetik. 2014; 26:342–345. https://doi.org/10.1007/s11825-014-0010-6.
54. Gericke, G.S. A Unifying hypothesis for the genome dynamics proposed to underlie neuropsychiatric phenotypes. Genes (Basel). 2024; 15(4):471. https://doi.org/10.3390/genes15040471.
55. Militaru, M.S.; Babliuc, I.M.; Bloaje-Florică, V.L.; Danci, V.A.; Filip-Deac, I.; Kutasi, E.; Simon, V.; Militaru, M.; Cătană, A. The impact of chromosomal mosaicisms on prenatal diagnosis and genetic counseling - A narrative review. J Pers Med. 2024; 14(7):774. https://doi.org/10.3390/jpm14070774.
56. Oliveira, Y.G.; Montenegro, M.M.; Almeida, V.T.; Moura, E.A.; Nascimento, A.M.; Carvalho, G.F.D.S.; Zanardo, E.A.; Chehimi, S.N.; Wolff, B.M.; Vieira, L.L.; et al. Clinical utility of multitissue genomic arrays in diagnosing pigmentary mosaicism associated with neurodevelopmental delay. J Mol Diagn. 2025; 27(12):1232-1241. https://doi.org/10.1016/j.jmoldx.2025.09.002.
57. Mukamel, E.A.; Liu, H.; Behrens, M.M.; Ecker, J.R. Cell-type-specific enrichment of somatic aneuploidy in the mammalian brain. Neuron. 2025; 113(17):2814-2821.e2. https://doi.org/10.1016/j.neuron.2025.08.006.
58. Kirsch-Volders, M.; Mišík, M.; Fenech, M. Aneuploidy in Exfoliated Buccal Cells: mechanisms, methods, and future per-spectives. Mutagenesis. 2025; geaf024. https://doi.org/10.1093/mutage/geaf024.
59. Vihinen, M. Individual Genetic Heterogeneity. Genes (Basel). 2022; 13(9):1626. doi: 10.3390/genes13091626.
60. Hu, Q.; Maurais, E.G.; Ly, P. Cellular and genomic approaches for exploring structural chromosomal rearrangements. Chromosome Res. 2020; 28(1):19-30. https://doi.org/10.1007/s10577-020-09626-1.
61. Heng, E.; Thanedar, S.; Heng, H.H. Challenges and Opportunities for Clinical Cytogenetics in the 21st Century. Genes (Basel). 2023; 14(2):493. https://doi.org/10.3390/genes14020493.
62. Iourov, I.Y.; Vorsanova, S.G.; Yurov, Y.B. A Paradoxical Role for Somatic Chromosomal Mosaicism and Chromosome Instability in Cancer: Theoretical and Technological Aspects. Methods Mol Biol. 2024; 2825:67-78. https://doi.org/10.1007/978-1-0716-3946-7_3.
63. Sun, C.; Kathuria, K.; Emery, S.B.; Kim, B.; Burbulis, I.E.; Shin, J.H. Mapping recurrent mosaic copy number variation in human neurons. Nat Commun. 2024; 15(1):4220. https://doi.org/10.1038/s41467-024-48392-0.
64. Gupta, P.; Balasubramaniam, N.; Chang, H.Y.; Tseng, F.G.; Santra, T.S. A single-neuron: Current trends and future prospects. Cells. 2020; 9(6):1528. https://doi.org/10.3390/cells9061528.
65. Willsey, H.R.; Willsey, A.J.; Wang, B.; State, M.W. Genomics, convergent neuroscience and progress in understanding autism spectrum disorder. Nat Rev Neurosci. 2022; 23(6):323-341. https://doi.org/10.1038/s41583-022-00576-7.
66. Liu, G.; Stevens, J.B.; Horne, S.D.; Abdallah, B.Y.; Ye, K.J.; Bremer, S.W.; Ye, C.J.; Chen, D.J.; Heng, H.H. Genome chaos: survival strategy during crisis. Cell Cycle. 2014; 13(4):528-37. https://doi.org/10.4161/cc.27378.
67. Heng, J.; Heng, H.H.. Two-phased evolution: Genome chaos-mediated information creation and maintenance. Prog Bio-phys Mol Biol. 2021; 165:29-42. doi: 10.1016/j.pbiomolbio.2021.04.003.
68. Jiang, X.F.; Xiong, L.; Bai, L.; Lin, J.; Zhang, J.F.; Yan, K.; Zhu, J.Z.; Zheng, B.; Zheng, J.J. Structure and dynamics of human complication-disease network. Chaos, Solitons & Fractals. 2022; 164:112633.
Review
For citations:
Iourov I.Y., Vorsanova S.G., Pankratova E.D., Yurov Yu.B., Chaika Yu.A. Unstable Genomes in the Human Brain: What Does It Mean for Personalized Psychiatry and Neurology. Personalized Psychiatry and Neurology. 2025;5(4):16-25. https://doi.org/10.52667/2712-9179-2025-5-4-16-25












