Preview

Personalized Psychiatry and Neurology

Advanced search

Personalized approach to prediction and prevention of haloperidol-induced metabolic syndrome

https://doi.org/10.52667/2712-9179-2025-5-1-16-26

Abstract

Haloperidol (HLP) is a general medication in the treatment of psychotic disorders such as schizophrenia and acute mania. One of HLP’s advantages compared to other antipsychotics, such as olanzapine or clozapine, is its relatively low risk of significant weight gain, making it more suitable for patients requiring strict weight control. However, despite this comparatively favorable profile, some patients may experience moderate weight gain with long-term use of HLP. This side effect can be attributed to several factors. First, HLP affects metabolic processes, which may lead to changes in appetite and reduced physical activity. Second, the drug can increase prolactin levels, which is associated with the development of hyperprolactinemia—a condition that may contribute to weight gain and the emergence of other components of metabolic syndrome, such as insulin resistance. Third, HLP may promote increased oxidative stress, which plays an important role in the pathogenesis of metabolic disorders. These mechanisms underscore the need for monitoring patients on HLP to promptly detect and manage potential metabolic side effects. Objective: To update the knowledge of practicing psychiatrists and clinical pharmacologists about a personalized approach to the prevention of metabolic syndrome in patients with psychiatric disorders when taking HLP. Methods: Full-text articles published from 01.09.2013 to 01.09.2024 were searched in PubMed, Science Direct, eLIBRARY.RU, and Google Scholar. Results: This review analyses and summarizes the results of foreign and domestic studies on the effect of haloperidol on the development of metabolic syndrome, the role of risk factors and hereditary predisposition in the development of HLP -induced metabolic syndrome in patients with psychiatric disorders.

Conclusion: Generalized data on the effect of HLP on the development of metabolic syndrome in patients with psychiatric disorders may be required by psychiatrists and clinical pharmacologists when selecting the dose and duration of haloperidol administration. Predictive pharmacogenetic testing may help to reduce the probability of this adverse drug reaction and increase the compliance of haloperidol therapy.

About the Authors

V. V. Grechkina
V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology; 3 St. Petersburg State Healthcare Institution “City Psychiatric Hospital №6”
Russian Federation

192019 Saint Petersburg

191167 St. Petersburg



N. A. Shnayder
V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology; V.F. Voino-Yasenetsky Krasnoyarsk State Medical University of Russia
Russian Federation

192019 Saint Petersburg

660022 Krasnoyarsk

Tel.: +7-(812)-620-02-22 (N.A.S.)



References

1. Peltier, M.R.; Mehmet Sofuoglu. Chapter 23 - Pharmacological cognitive enhancers. Cognition and Addiction. 2020, 303-320. doi:10.1016/B978-0-12-815298-0.00023-X

2. Nasyrova, R.F.; Neznanov, N.G. Clinical psychopharmacogenetics. DEAN. 2020, 408. ISBN 978-5-6043573-7-8

3. Nasyrova, R.F.; Kidyaeva, A.V.; Grechkina, V.V.; Shnayder, N.A. Personalized approach to prediction and prevention of haloperidol-induced QT interval prolongation: brief review. Pharmacogenetics and Pharmacogenomics. 2024, (1), 20-30. doi:10.37489/2588-0527-2024-1-20-30

4. Andersen, M.; Glintborg, D. Metabolic Syndrome in Hyperprolactinemia. Front Horm Res. 2018, 49, 29-47. doi: 10.1159/000486000.

5. Mukherjee, S.; Skrede, S.; Milbank, E.; Andriantsitohaina, R.; López, M.; Fernø, J. Understanding the Effects of Antipsychotics on Appetite Control. Front Nutr. 2022, 8, 815456. doi: 10.3389/fnut.2021.815456

6. Vázquez-Carrillo, D.I.; Ocampo-Ruiz, A.L.; Báez-Meza, A.; Ramírez-Hernández, G.; Adán-Castro, E.; García-Rodrigo, J.F.; Dena-Beltrán, J.L.; de Los, Ríos, E.A.; Sánchez-Martínez, M.K.; Ortiz, M.G.; Escalera, M.G.; Clapp, C.; Macotela, Y. Dopamine D2 receptor antagonist counteracts hyperglycemia and insulin resistance in diet-induced obese male mice. PLoS One. 2024, 19(4), e0301496. doi:10.1371/journal.pone.0301496

7. Lopez-Vicchi, F.; De, Winne, C.; Brie, B.; Sorianello, E.; Ladyman, S.R.; Becu-Villalobos, D. Metabolic functions of prolactin: Physiological and pathological aspects. J Neuroendocrinol. 2020, 32(11), e12888. doi:10.1111/jne.12888

8. Ben-Jonathan, N.; LaPensee, C.R.; LaPensee, E.W. What can we learn from rodents about prolactin in humans? Endocr Rev. 2008, 29(1), 1-41. doi:10.1210/er.2007-0017

9. Woodside, B. Prolactin and the hyperphagia of lactation. Physiol Behav. 2007, 91(4), 375-82. doi: 10.1016/j.physbeh.2007.04.015

10. Bina, K.G.; Cincotta, A.H. Dopaminergic agonists normalize elevated hypothalamic neuropeptide Y and corticotropin-releasing hormone, body weight gain, and hyperglycemia in ob/ob mice. Neuroendocrinology. 2000, 71(1), 68-78. doi: 10.1159/000054522

11. Pirchio, R.; Graziadio, C.; Colao, A.; Pivonello, R.; Auriemma, R.S. Metabolic effects of prolactin. Front Endocrinol. 2022, 13, 1015520. doi:10.3389/fendo.2022.1015520

12. Lopez-Vicchi, F.; Ladyman, S.R.; Ornstein, A.M.; Gustafson, P.; Knowles, P.; Luque, G.M.; Grattan, D.R.; Becu-Villalobos, D. Chronic high prolactin levels impact on gene expression at discrete hypothalamic nuclei involved in food intake. FASEB J. 2020, 34(3), 3902-3914. doi:10.1096/fj.201902357R

13. Balbach, L.; Wallaschofski, H.; Völzke, H.; Nauck, M.; Dörr, M.; Haring, R. Serum prolactin concentrations as risk factor of metabolic syndrome or type 2 diabetes? BMC Endocr Disord. 2013, 13, 12. doi:10.1186/1472-6823-13-12

14. Ponce, A.J.; Galván-Salas, T.; Lerma-Alvarado, R.M.; Ruiz-Herrera, X.; Hernández-Cortés, T.; Valencia-Jiménez, R.; Cárdenas-Rodríguez, L.E.; Escalera, M.G.; Clapp, C.; Macotela, Y. Low prolactin levels are associated with visceral adipocyte hypertrophy and insulin resistance in humans. Endocrine. 2020, 67(2), 331-343. doi:10.1007/s12020-019-02170-x

15. Zhang, Y.; Lu, T.; Yan, H.; Ruan, Y.; Wang, L.; Zhang, D.; Yue, W.; Lu, L. Replication of association between schizophrenia and chromosome 6p21-6p22.1 polymorphisms in Chinese Han population. PLoS One. 2013, 8(2), e56732. doi: 10.1371/journal.pone.0056732

16. Sinkus, M.L.; Adams, C.E.; Logel, J.; Freedman, R.; Leonard, S. Expression of immune genes on chromosome 6p21.3-22.1 in schizophrenia. Brain Behav Immun. 2013, 32, 51-62. doi:10.1016/j.bbi.2013.01.087

17. Ivanova, S.A.; Osmanova, D.Z.; Boiko, A.S.; Pozhidaev, I.V.; Freidin, M.B.; Fedorenko, O.Y.; Semke, A.V.; Bokhan, N.A.; Kornetova, E.G.; Rakhmazova, L.D.; Wilffert, B.; Loonen, A.J. Prolactin gene polymorphism (-1149 G/T) is associated with hyperprolactinemia in patients with schizophrenia treated with antipsychotics. Schizophr Res. 2017, 182, 110-114. doi: 10.1016/j.schres.2016.10.029

18. Hernández-Bello, J.; Palafox-Sanchez, C.A.; García-Arellano, S.; Reyes-Castillo, Z.; Pereira-Suárez, A.L.; Parra-Rojas, I.; Navarro-Zarza, J.E.; Cruz-Mosso, D.U.; Torres-Carrillo, N.M.; Muñoz-Valle, J.F. Association of extrapituitary prolactin promoter polymorphism with disease susceptibility and anti-RNP antibodies in Mexican patients with systemic lupus erythematosus. Arch Med Sci. 2018,1 4(5), 1025-1032. doi:10.5114/aoms.2016.62138

19. Lee, Y.C.; Raychaudhuri, S.; Cui, J.; De, Vivo, I.; Ding, B.; Alfredsson, L.; Padyukov, L.; Costenbader, K.H.; Seielstad, M.; Graham, R.R.; Klareskog, L.; Gregersen, P.K.; Plenge, R.M.; Karlson, E.W. The PRL -1149 G/T polymorphism and rheumatoid arthritis susceptibility. Arthritis Rheum. 2009, 60(5), 1250-4. doi:10.1002/art.24468

20. Treadwell, E.L.; Wiley, K.; Word, B.; Melchior, W.; Tolleson, W.H.; Gopee, N.; Hammons, G.; Lyn-Cook, B.D. Prolactin and Dehydroepiandrosterone Levels in Women with Systemic Lupus Erythematosus: The Role of the Extrapituitary Prolactin Promoter Polymorphism at -1149G/T. J Immunol Res. 2015, 2015, 435658. doi:10.1155/2015/435658

21. Duc, Nguyen, H.; Oh, H.; Yu, B.P.; Hoang, N.M.H.; Jo, W.H., Young, Chung, H., Kim, M.S. Associations between Prolactin, Diabetes, and Cognitive Impairment: A Literature Review. Neuroendocrinology. 2022, 112(9), 856-873. doi: 10.1159/000521653

22. Gierach, M.; Bruska-Sikorska, M.; Rojek, M.; Junik, R. Hyperprolactinemia and insulin resistance. Endokrynol Pol. 2022, 73(6), 959-967. doi:10.5603/EP.a2022.0075

23. Yang, H.; Lin, J.; Li, H.; Liu, Z.; Chen, X.; Chen, Q. Prolactin Is Associated With Insulin Resistance and Beta-Cell Dysfunction in Infertile Women With Polycystic Ovary Syndrome. Front Endocrinol. 2021, 12, 571229. doi: 10.3389/fendo.2021.571229

24. Nilsson, L.; Binart, N.; Bohlooly-Y, M.; Bramnert, M.; Egecioglu, E.; Kindblom, J.; Kelly, P.A.; Kopchick, J.J.; Ormandy, C.J.; Ling, C.; Billig, H. Prolactin and growth hormone regulate adiponectin secretion and receptor expression in adipose tissue. Biochem Biophys Res Commun. 2005, 331(4), 1120-6. doi:10.1016/j.bbrc.2005.04.026

25. Nguyen, D.H.; Yu, P.B.; Hoang, N.H.M.; Jo, W.H.; Chung, Y.H.; Kim, M.S. Prolactin and Its Altered Action in Alzheimer's Disease and Parkinson's Disease. Neuroendocrinology. 2022, 112(5), 427-445. doi:10.1159/000517798

26. Haile, K.; Haile, A.; Timerga, A. Predictors of Lipid Profile Abnormalities Among Patients with Metabolic Syndrome in Southwest Ethiopia: A Cross-Sectional Study. Vasc Health Risk Manag. 2021, 17, 461- 469. doi:10.2147/VHRM.S319161

27. Pala, N.A.; Laway, B.A.; Misgar, R.A.; Dar, R.A. Metabolic abnormalities in patients with prolactinoma: response to treatment with cabergoline. Diabetol Metab Syndr. 2015, 7, 99. doi:10.1186/s13098-015-0094-4

28. Bardenstein, L.M.; Mkrtumyan, A.M.; Alyoshkina, G.A. State of carbohydrate and lipid metabolism in patients with paranoid schizophrenia during therapy with atypical antipsychotic drugs. Diabetes Mellitus. 2010, 13(2), 42-44. doi: 10.14341/2072-0351-5672

29. Perez-Iglesias, R.; Crespo-Facorro, B.; Martinez-Garcia, O.; Ramirez-Bonilla, M.L.; Alvarez-Jimenez, M.; Pelayo-Teran, J.M.; Garcia-Unzueta, M.T.; Amado, J.A.; Vazquez-Barquero, J.L. Weight gain induced by haloperidol, risperidone and olanzapine after 1 year: findings of a randomized clinical trial in a drug-naïve population. Schizophr Res. 2008, 99(1-3), 13-22. doi:10.1016/j.schres.2007.10.022

30. Keulen, K.; Knol, W.; Schrijver, E.J.M.; Marum, R.J.; Strien, A.M.; Nanayakkara, P.W.B. Prophylactic Use of Haloperidol and Changes in Glucose Levels in Hospitalized Older Patients. J Clin Psychopharmacol. 2018, 38(1), 51-54. doi: 10.1097/JCP.0000000000000812

31. Vidarsdottir, S.; de Weenen, L.J.E.; Frölich, M.; Roelfsema, F.; Romijn, J.A.; Pijl, H. Effects of olanzapine and haloperidol on the metabolic status of healthy men. J Clin Endocrinol Metab. 2010, 95(1), 118-25. doi:10.1210/jc.2008-1815

32. Parabiaghi, A.; Tettamanti, M.; D'Avanzo, B.; Barbato, A. GiSAS study group. Metabolic syndrome and drug discontinuation in schizophrenia: a randomized trial comparing aripiprazole olanzapine and haloperidol. Acta Psychiatr Scand. 2016, 133(1), 63-75. doi:10.1111/acps.12468

33. Ventriglio, A.; Baldessarini, R.J.; Vitrani, G.; Bonfitto, I.; Cecere, A.C.; Rinaldi, A.; Petito, A.; Bellomo, A. Metabolic Syndrome in Psychotic Disorder Patients Treated With Oral and Long-Acting Injected Antipsychotics. Front Psychiatry. 2019, 9, 744. doi:10.3389/fpsyt.2018.00744

34. El-Awdan, S.A.; Gehad A. Abdel, G.A.J., Saleh, D.O. Alleviation of haloperidol induced oxidative stress in rats: Effects of sucrose vs grape seed extract. Bulletin of Faculty of Pharmacy. 2015, 53 (1), 29-35& doi:10.1016/j.bfopcu.2015.02.004

35. Masenga, S.K.; Kabwe, L.S.; Chakulya, M.; Kirabo, A. Mechanisms of Oxidative Stress in Metabolic Syndrome. Int. J. Mol. Sci. 2023, 24, 7898. doi:10.3390/ijms24097898

36. Kajero, J.A.; Seedat, S.; Ohaeri, J.U.; Akindele, A.; Aina, O. Effects of cannabidiol on weight and fasting blood sugar with chronic and subchronic haloperidol administration. Discov Ment Health. 2022, 2(1), 18. doi:10.1007/s44192-022-00021-2

37. Andreazza, A.C.; Barakauskas, V.E.; Fazeli, S.; Feresten, A.; Shao, L.; Wei, V.; Wu, C.H.; Barr, A.M.; Beasley, C.L. Effects of haloperidol and clozapine administration on oxidative stress in rat brain, liver and serum. Neurosci Lett. 2015, 591, 36-40. doi:10.1016/j.neulet.2015.02.028

38. Rezaei, F.; Farhat, D.; Gursu, G.; Samnani, S.; Lee, J.Y. Snapshots of ABCG1 and ABCG5/G8: A Sterol's Journey to Cross the Cellular Membranes. Int J Mol Sci. 2022, 24(1), 484. doi:10.3390/ijms24010484

39. Oldfield, S.; Lowry, A.C.; Ruddick, J.; Lightman, L.S. ABCG4: a novel human white family ABC-transporter expressed in the brain and eye. Biochimica et Biophysica Acta (BBA). Molecular Cell Research. 2002, 175-179, doi:10.1016/S0167-4889(02)00269-0

40. Nasyrova, R.F.; Neznanov, N.G. Clinical psychopharmacogenetics. DEAN. 2020, 408.

41. Kiss, K.; Kucsma, N.; Brozik, A.; Tusnady, G.E.; Bergam, P.; Niel, G.; Szakacs, G. Role of the N-terminal transmembrane domain in the endo-lysosomal targeting and function of the human ABCB6 protein. Biochem J. 2015, 467(1), 127-39. doi: 10.1042/BJ20141085

42. Doyle, L.; Ross, D.D. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene. 2003, 22(47), 7340-58. doi:10.1038/sj.onc.1206938

43. Arduino, I.; Iacobazzi, R.M.; Riganti, C.; Lopedota, A.A.; Perrone, M.G.; Lopalco, A.; Cutrignelli, A.; Cantore, M.; Laquintana, V.; Franco, M.; Colabufo, N.A.; Luurtsema, G.; Contino, M.; Denora, N. Induced expression of P-gp and BCRP transporters on brain endothelial cells using transferrin functionalized nanostructured lipid carriers: A first step of a potential strategy for the treatment of Alzheimer's disease. Int J Pharm. 2020, 591, 120011. doi:10.1016/j.ijpharm.2020.120011

44. OMIM [Accessed September 20, 2024]. Available at: https://www.omim.org/entry/124010?search=Cytochrome%20P450%20isoenzymes%203A4&highlight=3a4%2Ccytochrome%2Cp450

45. OMIM [Accessed September 20, 2024]. Available at: https://www.omim.org/entry/124030?search=CYP2D6&highlight=cyp2d6

46. OMIM [Accessed September 20, 2024]. Available at: https://www.omim.org/entry/600068?search=UGT2B7&highlight=ugt2b7

47. OMIM [Accessed September 20, 2024]. Available at: https://www.omim.org/entry/604159?search=SLC6A5&highlight=slc6a5

48. OMIM [Accessed September 20, 2024]. Available at: https://www.omim.org/entry/611785?search=ABCB5&highlight=abcb5

49. Shnayder, N.A.; Grechkina, V.V.; Arkhipov, V.V.; Nasyrova, R.F. Role of Pharmacogenetic Testing in the Risk and Safety Assessment of Valproates: The Ethnic Aspect (Review). Safety and Risk of Pharmacotherapy. 2024, 12(2), 132-154. (In Russ.) doi:10.30895/2312-7821-2024-12-2-132-154


Review

For citations:


Grechkina V.V., Shnayder N.A. Personalized approach to prediction and prevention of haloperidol-induced metabolic syndrome. Personalized Psychiatry and Neurology. 2025;5(1):16-26. https://doi.org/10.52667/2712-9179-2025-5-1-16-26

Views: 156


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2712-9179 (Online)