Personalized approach to prediction and prevention of haloperidol-induced metabolic syndrome
https://doi.org/10.52667/2712-9179-2025-5-1-16-26
Abstract
Haloperidol (HLP) is a general medication in the treatment of psychotic disorders such as schizophrenia and acute mania. One of HLP’s advantages compared to other antipsychotics, such as olanzapine or clozapine, is its relatively low risk of significant weight gain, making it more suitable for patients requiring strict weight control. However, despite this comparatively favorable profile, some patients may experience moderate weight gain with long-term use of HLP. This side effect can be attributed to several factors. First, HLP affects metabolic processes, which may lead to changes in appetite and reduced physical activity. Second, the drug can increase prolactin levels, which is associated with the development of hyperprolactinemia—a condition that may contribute to weight gain and the emergence of other components of metabolic syndrome, such as insulin resistance. Third, HLP may promote increased oxidative stress, which plays an important role in the pathogenesis of metabolic disorders. These mechanisms underscore the need for monitoring patients on HLP to promptly detect and manage potential metabolic side effects. Objective: To update the knowledge of practicing psychiatrists and clinical pharmacologists about a personalized approach to the prevention of metabolic syndrome in patients with psychiatric disorders when taking HLP. Methods: Full-text articles published from 01.09.2013 to 01.09.2024 were searched in PubMed, Science Direct, eLIBRARY.RU, and Google Scholar. Results: This review analyses and summarizes the results of foreign and domestic studies on the effect of haloperidol on the development of metabolic syndrome, the role of risk factors and hereditary predisposition in the development of HLP -induced metabolic syndrome in patients with psychiatric disorders.
Conclusion: Generalized data on the effect of HLP on the development of metabolic syndrome in patients with psychiatric disorders may be required by psychiatrists and clinical pharmacologists when selecting the dose and duration of haloperidol administration. Predictive pharmacogenetic testing may help to reduce the probability of this adverse drug reaction and increase the compliance of haloperidol therapy.
Keywords
About the Authors
V. V. GrechkinaRussian Federation
192019 Saint Petersburg
191167 St. Petersburg
N. A. Shnayder
Russian Federation
192019 Saint Petersburg
660022 Krasnoyarsk
Tel.: +7-(812)-620-02-22 (N.A.S.)
References
1. Peltier, M.R.; Mehmet Sofuoglu. Chapter 23 - Pharmacological cognitive enhancers. Cognition and Addiction. 2020, 303-320. doi:10.1016/B978-0-12-815298-0.00023-X
2. Nasyrova, R.F.; Neznanov, N.G. Clinical psychopharmacogenetics. DEAN. 2020, 408. ISBN 978-5-6043573-7-8
3. Nasyrova, R.F.; Kidyaeva, A.V.; Grechkina, V.V.; Shnayder, N.A. Personalized approach to prediction and prevention of haloperidol-induced QT interval prolongation: brief review. Pharmacogenetics and Pharmacogenomics. 2024, (1), 20-30. doi:10.37489/2588-0527-2024-1-20-30
4. Andersen, M.; Glintborg, D. Metabolic Syndrome in Hyperprolactinemia. Front Horm Res. 2018, 49, 29-47. doi: 10.1159/000486000.
5. Mukherjee, S.; Skrede, S.; Milbank, E.; Andriantsitohaina, R.; López, M.; Fernø, J. Understanding the Effects of Antipsychotics on Appetite Control. Front Nutr. 2022, 8, 815456. doi: 10.3389/fnut.2021.815456
6. Vázquez-Carrillo, D.I.; Ocampo-Ruiz, A.L.; Báez-Meza, A.; Ramírez-Hernández, G.; Adán-Castro, E.; García-Rodrigo, J.F.; Dena-Beltrán, J.L.; de Los, Ríos, E.A.; Sánchez-Martínez, M.K.; Ortiz, M.G.; Escalera, M.G.; Clapp, C.; Macotela, Y. Dopamine D2 receptor antagonist counteracts hyperglycemia and insulin resistance in diet-induced obese male mice. PLoS One. 2024, 19(4), e0301496. doi:10.1371/journal.pone.0301496
7. Lopez-Vicchi, F.; De, Winne, C.; Brie, B.; Sorianello, E.; Ladyman, S.R.; Becu-Villalobos, D. Metabolic functions of prolactin: Physiological and pathological aspects. J Neuroendocrinol. 2020, 32(11), e12888. doi:10.1111/jne.12888
8. Ben-Jonathan, N.; LaPensee, C.R.; LaPensee, E.W. What can we learn from rodents about prolactin in humans? Endocr Rev. 2008, 29(1), 1-41. doi:10.1210/er.2007-0017
9. Woodside, B. Prolactin and the hyperphagia of lactation. Physiol Behav. 2007, 91(4), 375-82. doi: 10.1016/j.physbeh.2007.04.015
10. Bina, K.G.; Cincotta, A.H. Dopaminergic agonists normalize elevated hypothalamic neuropeptide Y and corticotropin-releasing hormone, body weight gain, and hyperglycemia in ob/ob mice. Neuroendocrinology. 2000, 71(1), 68-78. doi: 10.1159/000054522
11. Pirchio, R.; Graziadio, C.; Colao, A.; Pivonello, R.; Auriemma, R.S. Metabolic effects of prolactin. Front Endocrinol. 2022, 13, 1015520. doi:10.3389/fendo.2022.1015520
12. Lopez-Vicchi, F.; Ladyman, S.R.; Ornstein, A.M.; Gustafson, P.; Knowles, P.; Luque, G.M.; Grattan, D.R.; Becu-Villalobos, D. Chronic high prolactin levels impact on gene expression at discrete hypothalamic nuclei involved in food intake. FASEB J. 2020, 34(3), 3902-3914. doi:10.1096/fj.201902357R
13. Balbach, L.; Wallaschofski, H.; Völzke, H.; Nauck, M.; Dörr, M.; Haring, R. Serum prolactin concentrations as risk factor of metabolic syndrome or type 2 diabetes? BMC Endocr Disord. 2013, 13, 12. doi:10.1186/1472-6823-13-12
14. Ponce, A.J.; Galván-Salas, T.; Lerma-Alvarado, R.M.; Ruiz-Herrera, X.; Hernández-Cortés, T.; Valencia-Jiménez, R.; Cárdenas-Rodríguez, L.E.; Escalera, M.G.; Clapp, C.; Macotela, Y. Low prolactin levels are associated with visceral adipocyte hypertrophy and insulin resistance in humans. Endocrine. 2020, 67(2), 331-343. doi:10.1007/s12020-019-02170-x
15. Zhang, Y.; Lu, T.; Yan, H.; Ruan, Y.; Wang, L.; Zhang, D.; Yue, W.; Lu, L. Replication of association between schizophrenia and chromosome 6p21-6p22.1 polymorphisms in Chinese Han population. PLoS One. 2013, 8(2), e56732. doi: 10.1371/journal.pone.0056732
16. Sinkus, M.L.; Adams, C.E.; Logel, J.; Freedman, R.; Leonard, S. Expression of immune genes on chromosome 6p21.3-22.1 in schizophrenia. Brain Behav Immun. 2013, 32, 51-62. doi:10.1016/j.bbi.2013.01.087
17. Ivanova, S.A.; Osmanova, D.Z.; Boiko, A.S.; Pozhidaev, I.V.; Freidin, M.B.; Fedorenko, O.Y.; Semke, A.V.; Bokhan, N.A.; Kornetova, E.G.; Rakhmazova, L.D.; Wilffert, B.; Loonen, A.J. Prolactin gene polymorphism (-1149 G/T) is associated with hyperprolactinemia in patients with schizophrenia treated with antipsychotics. Schizophr Res. 2017, 182, 110-114. doi: 10.1016/j.schres.2016.10.029
18. Hernández-Bello, J.; Palafox-Sanchez, C.A.; García-Arellano, S.; Reyes-Castillo, Z.; Pereira-Suárez, A.L.; Parra-Rojas, I.; Navarro-Zarza, J.E.; Cruz-Mosso, D.U.; Torres-Carrillo, N.M.; Muñoz-Valle, J.F. Association of extrapituitary prolactin promoter polymorphism with disease susceptibility and anti-RNP antibodies in Mexican patients with systemic lupus erythematosus. Arch Med Sci. 2018,1 4(5), 1025-1032. doi:10.5114/aoms.2016.62138
19. Lee, Y.C.; Raychaudhuri, S.; Cui, J.; De, Vivo, I.; Ding, B.; Alfredsson, L.; Padyukov, L.; Costenbader, K.H.; Seielstad, M.; Graham, R.R.; Klareskog, L.; Gregersen, P.K.; Plenge, R.M.; Karlson, E.W. The PRL -1149 G/T polymorphism and rheumatoid arthritis susceptibility. Arthritis Rheum. 2009, 60(5), 1250-4. doi:10.1002/art.24468
20. Treadwell, E.L.; Wiley, K.; Word, B.; Melchior, W.; Tolleson, W.H.; Gopee, N.; Hammons, G.; Lyn-Cook, B.D. Prolactin and Dehydroepiandrosterone Levels in Women with Systemic Lupus Erythematosus: The Role of the Extrapituitary Prolactin Promoter Polymorphism at -1149G/T. J Immunol Res. 2015, 2015, 435658. doi:10.1155/2015/435658
21. Duc, Nguyen, H.; Oh, H.; Yu, B.P.; Hoang, N.M.H.; Jo, W.H., Young, Chung, H., Kim, M.S. Associations between Prolactin, Diabetes, and Cognitive Impairment: A Literature Review. Neuroendocrinology. 2022, 112(9), 856-873. doi: 10.1159/000521653
22. Gierach, M.; Bruska-Sikorska, M.; Rojek, M.; Junik, R. Hyperprolactinemia and insulin resistance. Endokrynol Pol. 2022, 73(6), 959-967. doi:10.5603/EP.a2022.0075
23. Yang, H.; Lin, J.; Li, H.; Liu, Z.; Chen, X.; Chen, Q. Prolactin Is Associated With Insulin Resistance and Beta-Cell Dysfunction in Infertile Women With Polycystic Ovary Syndrome. Front Endocrinol. 2021, 12, 571229. doi: 10.3389/fendo.2021.571229
24. Nilsson, L.; Binart, N.; Bohlooly-Y, M.; Bramnert, M.; Egecioglu, E.; Kindblom, J.; Kelly, P.A.; Kopchick, J.J.; Ormandy, C.J.; Ling, C.; Billig, H. Prolactin and growth hormone regulate adiponectin secretion and receptor expression in adipose tissue. Biochem Biophys Res Commun. 2005, 331(4), 1120-6. doi:10.1016/j.bbrc.2005.04.026
25. Nguyen, D.H.; Yu, P.B.; Hoang, N.H.M.; Jo, W.H.; Chung, Y.H.; Kim, M.S. Prolactin and Its Altered Action in Alzheimer's Disease and Parkinson's Disease. Neuroendocrinology. 2022, 112(5), 427-445. doi:10.1159/000517798
26. Haile, K.; Haile, A.; Timerga, A. Predictors of Lipid Profile Abnormalities Among Patients with Metabolic Syndrome in Southwest Ethiopia: A Cross-Sectional Study. Vasc Health Risk Manag. 2021, 17, 461- 469. doi:10.2147/VHRM.S319161
27. Pala, N.A.; Laway, B.A.; Misgar, R.A.; Dar, R.A. Metabolic abnormalities in patients with prolactinoma: response to treatment with cabergoline. Diabetol Metab Syndr. 2015, 7, 99. doi:10.1186/s13098-015-0094-4
28. Bardenstein, L.M.; Mkrtumyan, A.M.; Alyoshkina, G.A. State of carbohydrate and lipid metabolism in patients with paranoid schizophrenia during therapy with atypical antipsychotic drugs. Diabetes Mellitus. 2010, 13(2), 42-44. doi: 10.14341/2072-0351-5672
29. Perez-Iglesias, R.; Crespo-Facorro, B.; Martinez-Garcia, O.; Ramirez-Bonilla, M.L.; Alvarez-Jimenez, M.; Pelayo-Teran, J.M.; Garcia-Unzueta, M.T.; Amado, J.A.; Vazquez-Barquero, J.L. Weight gain induced by haloperidol, risperidone and olanzapine after 1 year: findings of a randomized clinical trial in a drug-naïve population. Schizophr Res. 2008, 99(1-3), 13-22. doi:10.1016/j.schres.2007.10.022
30. Keulen, K.; Knol, W.; Schrijver, E.J.M.; Marum, R.J.; Strien, A.M.; Nanayakkara, P.W.B. Prophylactic Use of Haloperidol and Changes in Glucose Levels in Hospitalized Older Patients. J Clin Psychopharmacol. 2018, 38(1), 51-54. doi: 10.1097/JCP.0000000000000812
31. Vidarsdottir, S.; de Weenen, L.J.E.; Frölich, M.; Roelfsema, F.; Romijn, J.A.; Pijl, H. Effects of olanzapine and haloperidol on the metabolic status of healthy men. J Clin Endocrinol Metab. 2010, 95(1), 118-25. doi:10.1210/jc.2008-1815
32. Parabiaghi, A.; Tettamanti, M.; D'Avanzo, B.; Barbato, A. GiSAS study group. Metabolic syndrome and drug discontinuation in schizophrenia: a randomized trial comparing aripiprazole olanzapine and haloperidol. Acta Psychiatr Scand. 2016, 133(1), 63-75. doi:10.1111/acps.12468
33. Ventriglio, A.; Baldessarini, R.J.; Vitrani, G.; Bonfitto, I.; Cecere, A.C.; Rinaldi, A.; Petito, A.; Bellomo, A. Metabolic Syndrome in Psychotic Disorder Patients Treated With Oral and Long-Acting Injected Antipsychotics. Front Psychiatry. 2019, 9, 744. doi:10.3389/fpsyt.2018.00744
34. El-Awdan, S.A.; Gehad A. Abdel, G.A.J., Saleh, D.O. Alleviation of haloperidol induced oxidative stress in rats: Effects of sucrose vs grape seed extract. Bulletin of Faculty of Pharmacy. 2015, 53 (1), 29-35& doi:10.1016/j.bfopcu.2015.02.004
35. Masenga, S.K.; Kabwe, L.S.; Chakulya, M.; Kirabo, A. Mechanisms of Oxidative Stress in Metabolic Syndrome. Int. J. Mol. Sci. 2023, 24, 7898. doi:10.3390/ijms24097898
36. Kajero, J.A.; Seedat, S.; Ohaeri, J.U.; Akindele, A.; Aina, O. Effects of cannabidiol on weight and fasting blood sugar with chronic and subchronic haloperidol administration. Discov Ment Health. 2022, 2(1), 18. doi:10.1007/s44192-022-00021-2
37. Andreazza, A.C.; Barakauskas, V.E.; Fazeli, S.; Feresten, A.; Shao, L.; Wei, V.; Wu, C.H.; Barr, A.M.; Beasley, C.L. Effects of haloperidol and clozapine administration on oxidative stress in rat brain, liver and serum. Neurosci Lett. 2015, 591, 36-40. doi:10.1016/j.neulet.2015.02.028
38. Rezaei, F.; Farhat, D.; Gursu, G.; Samnani, S.; Lee, J.Y. Snapshots of ABCG1 and ABCG5/G8: A Sterol's Journey to Cross the Cellular Membranes. Int J Mol Sci. 2022, 24(1), 484. doi:10.3390/ijms24010484
39. Oldfield, S.; Lowry, A.C.; Ruddick, J.; Lightman, L.S. ABCG4: a novel human white family ABC-transporter expressed in the brain and eye. Biochimica et Biophysica Acta (BBA). Molecular Cell Research. 2002, 175-179, doi:10.1016/S0167-4889(02)00269-0
40. Nasyrova, R.F.; Neznanov, N.G. Clinical psychopharmacogenetics. DEAN. 2020, 408.
41. Kiss, K.; Kucsma, N.; Brozik, A.; Tusnady, G.E.; Bergam, P.; Niel, G.; Szakacs, G. Role of the N-terminal transmembrane domain in the endo-lysosomal targeting and function of the human ABCB6 protein. Biochem J. 2015, 467(1), 127-39. doi: 10.1042/BJ20141085
42. Doyle, L.; Ross, D.D. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene. 2003, 22(47), 7340-58. doi:10.1038/sj.onc.1206938
43. Arduino, I.; Iacobazzi, R.M.; Riganti, C.; Lopedota, A.A.; Perrone, M.G.; Lopalco, A.; Cutrignelli, A.; Cantore, M.; Laquintana, V.; Franco, M.; Colabufo, N.A.; Luurtsema, G.; Contino, M.; Denora, N. Induced expression of P-gp and BCRP transporters on brain endothelial cells using transferrin functionalized nanostructured lipid carriers: A first step of a potential strategy for the treatment of Alzheimer's disease. Int J Pharm. 2020, 591, 120011. doi:10.1016/j.ijpharm.2020.120011
44. OMIM [Accessed September 20, 2024]. Available at: https://www.omim.org/entry/124010?search=Cytochrome%20P450%20isoenzymes%203A4&highlight=3a4%2Ccytochrome%2Cp450
45. OMIM [Accessed September 20, 2024]. Available at: https://www.omim.org/entry/124030?search=CYP2D6&highlight=cyp2d6
46. OMIM [Accessed September 20, 2024]. Available at: https://www.omim.org/entry/600068?search=UGT2B7&highlight=ugt2b7
47. OMIM [Accessed September 20, 2024]. Available at: https://www.omim.org/entry/604159?search=SLC6A5&highlight=slc6a5
48. OMIM [Accessed September 20, 2024]. Available at: https://www.omim.org/entry/611785?search=ABCB5&highlight=abcb5
49. Shnayder, N.A.; Grechkina, V.V.; Arkhipov, V.V.; Nasyrova, R.F. Role of Pharmacogenetic Testing in the Risk and Safety Assessment of Valproates: The Ethnic Aspect (Review). Safety and Risk of Pharmacotherapy. 2024, 12(2), 132-154. (In Russ.) doi:10.30895/2312-7821-2024-12-2-132-154
Review
For citations:
Grechkina V.V., Shnayder N.A. Personalized approach to prediction and prevention of haloperidol-induced metabolic syndrome. Personalized Psychiatry and Neurology. 2025;5(1):16-26. https://doi.org/10.52667/2712-9179-2025-5-1-16-26