Preview

Personalized Psychiatry and Neurology

Advanced search

Morphometric Characteristics of Cerebral Structures in Gilles De La Tourette Syndrome

https://doi.org/10.52667/2712-9179-2025-5-1-2-9

Abstract

Tic disorders, in particular Tourette syndrome, are a neurodevelopmental disorder common in children. Clinical manifestations of these disorders vary significantly depending on individual characteristics, age, gender, and the presence or absence of comorbidities. The pathophysiology of these disorders is believed to include a combination of genetic, environmental, psychological, immunological, and neurobiological factors. From the point of view of fundamental neurophysiology, Tourette syndrome is associated with a neurochemical imbalance of monoamines and morphometric changes affecting, in particular, neural networks that provide motor acts: the basal ganglia, thalamus, and cingulate cortex. To date, numerous studies have demonstrated the involvement of many more brain areas, such as the prefrontal cortex and cerebellum. This article presents the latest studies affecting the morphometric features of cerebral structures in patients with Tourette syndrome. During the analysis of the literature, a connection was revealed between the clinical manifestations of the disease and the morphometric characteristics of the basal ganglia, thalamus, cerebellum, cingulate gyrus and prefrontal cortex of patients with Gilles de la Tourette syndrome.

About the Authors

D. A. Nurmatova 
City Children's Clinical Hospital No.1
Uzbekistan

 Dilorom A. Nurmatova 

 100058, Tashkent 



N. G. Zhukova 
Siberian State Medical University
Russian Federation

 Natalia G. Zhukova 

 634050 Tomsk 



Z. F. Sayfitdinkhuzhaev 
Siberian State Medical University
Russian Federation

 Zaynutdinkhuzha F. Sayfitdinkhuzhaev 

 634050 Tomsk 

 Tel.: +7-923-408-24-49 



J. M. Okhunbaev 
City Children's Clinical Hospital No.1
Uzbekistan

 Jahongir M. Okhunbaev 

 100058, Tashkent 



References

1. Zykov, V.P. Tics and Tourette syndrome in children. S.S. Korsakov Journal of Neurology and Psychiatry. 2020, 120(5):116–124. doi:2020120051116

2. Chutko, L.S.; Surushkina, S.Yu.; Anisimova, T.I. Emotional disorders in adolescents with Tourette syndrome and their mothers. S.S. Korsakov Journal of Neurology and Psychiatry. 2018, 118(11):5659. doi: 10.17116/jnevro201811811156

3. Yu, L.; Xu, H.; Jiang, Z.; Yang, H.; Cui, Y.; Li, Y. Comorbidity of physical illnesses and mental disorders in outpatients with tic disorders: a retrospective study using the outpatient care system. Front Neurol. 2024, 15:1397766. doi: 10.3389/fneur.2024.1397766

4. Kadesjö, B.; Gillberg, C. Tourette's disorder: epidemiology and comorbidity in primary school children. J Am Acad Child Adolesc Psychiatry. 2000, 39(5): 548-555. doi:10.1097/00004583-200005000-00007

5. Li, F.; Cui, Y.; Li, Y.; Guo, L.; Ke, X.; Liu, J. et al. Prevalence of mental disorders in school children and adolescents in China: diagnostic data from detailed clinical assessments of 17,524 individuals. J Child Psychol Psychiatry. 2022, 63:34–46. doi: 10.1111/jcpp.13445

6. Alves, H.L.; Quagliato, E.M. The prevalence of tic disorders in children and adolescents in Brazil. Arq Neuropsiquiatr. 2014, 72(12):942-948. doi:10.1590/0004-282X20140174

7. Khalifa, N.; von Knorring, A. Prevalence of tic disorders and Tourette syndrome in a Swedish school population. Developmental Medicine & Child Neurology. 2003, 45:5. doi:10.1017/s0012162203000598

8. Surén, P.: Bakken, I.; Skurtveit, S.; Handal, M.; Reichborn-Kjennerud, T.; Stoltenberg, C.; Nøstvik, L.; Weidle, B. Tidsskr Nor Laegeforen. 2019, 139(17). doi:10.4045/tidsskr.19.0411

9. Bloch, M.H.; Peterson, B.S.; Scahill, L.; Otka, J.; Katsovich, L.; Zhang, H.; Leckman, J.F. Adulthood outcome of tic and obsessive-compulsive symptom severity in children with Tourette syndrome. Arch Pediatr Adolesc Med. 2006, 160(1):65-69. doi:10.1001/archpedi.160.1.65

10. Kurvits, L.; Martino, D.; Ganos, C. Clinical features that evoke the concept of disinhibition in Tourette syndrome. Front Psychiatry. 2020, 11(21):21. doi:10.3389/fpsyt.2020.00021

11. Yanjie, Q.; Zheng, Y.; Zhanjiang, L.; Xiong, L. Progress in Genetic Studies of Tourette's Syndrome. Brain Sci. 2017, 7:134. doi:10.3390/brainsci7100134

12. Cavallini, M.C.; Di Bella, D.; Catalano, M.; Bellodi, L. An association study between 5-HTTLPR polymorphism, COMT polymorphism, and Tourette's syndrome. Psychiatry Res. 2000, 97:93-100. doi:10.1016/s0165-1781(00)00220-1

13. Dehning, S.; Müller, N.; Matz, J.; Bender, A.; Kerle, I..; Benninghoff, J.; Musil, R..; Spellmann, I.; Bondy, B.; Möller, H.J. et al. A genetic variant of HTR2C may play a role in the manifestation of Tourette syndrome. Psychiatr Genet. 2010, 20:35-38. doi:10.1097/YPG.0b013e32833511ce

14. Moya, P.R.; Wendland, J.R.; Rubenstein, L.M.; Timpano, K.R.; Heiman, G.A.; Tischfield, J.A.; King, R.A.; Andrews, A.M.; Ramamoorthy, S.; McMahon, F.J. et al. Common and rare alleles of the serotonin transporter gene, SLC6A4, associated with Tourette disorder. Mov Disord. 2013, 28:1263-1270. doi:10.1002/mds.25460

15. Bondarenko, E.S.; Zykov, V.P.; Ostreiko, T.Ya. Features of neurotransmitter metabolism in Tourette syndrome. Almanac "Healing". 1997, 3:178-179 (In Russ.)

16. Tian, Y.; Gunther, J.R.; Liao, I.H.; Liu, D.; Ander, B.P.; Stamova, B.S.; Lit, L.; Jickling, G.C.; Xu, H.; Zhan, X.; Sharp, F.R. GABA- and acetylcholine-related gene expression in blood correlate with tic severity and microarray evidence for alternative splicing in Tourette syndrome: a pilot study. Brain Res. 2011, 1381:228-236. doi:10.1016/j.brainres.2011.01.026

17. Lamanna, J.; Ferro, M.; Spadini, S.; Racchetti, G.; Malgaroli, A. The dysfunctional mechanisms throwing tics: structural and functional changes in Tourette syndrome. Behav Sci. 2023, 13:668. doi:10.3390/bs13080668

18. Naro, A.; Billeri, L.; Colucci, V.P. et al. Brain functional connectivity in chronic tic disorders and Gilles de La Tourette syndrome. Prog Neurobiol. 2020, 194:101884. doi:10.1016/j.pneurobio.2020.101884

19. Worbe, Y.; Marrakchi-Kacem, L.; Lecomte, S. et al. Altered structural connectivity of cortico-striato-pallido-thalamic networks in Gilles de la Tourette syndrome. Brain. 2015, 138(Pt 2):472‐482. doi:10.1093/brain/awu311

20. Bloch, M.H.; Leckman, J.F.; Zhu, H.; Peterson, B.S. Caudate volumes in childhood predict symptom severity in adults with tourette syndrome. Neurology. 2005, 65:1253‐1258. doi:10.1212/01.wnl.0000180957.98702.69

21. Peterson, B.S.; Thomas, P.; Kane, M.J. et al. Basal ganglia volumes in patients with Gilles de la Tourette syndrome. Arch Gen Psychiatry. 2003, 60(4):415‐424. doi:10.1001/archpsyc.60.4.415

22. McCairn, K.W.; Nagai, Y.; Hori, Y. et al. A primary role for nucleus accumbens and related limbic network in vocal tics. Neuron. 2016, 89(2):300‐307. doi:10.1016/j.neuron.2015.12.025

23. Zavadenko, N.N.; Doronina, O.B.; Nesterovsky, Yu.E. Chronic tics and Tourette syndrome in children and adolescents: diagnostic and treatment characteristics. S.S. Korsakov Journal of Neurology and Psychiatry. 2015, 115(1):102‑109. doi:10.17116/jnevro201511511102-109

24. Peterson, B.S.; Bronen, R.A.; Duncan, C.C. Three cases of symptom change in Tourette's syndrome and obsessive-compulsive disorder associated with pediatric cerebral malignancies. J Neurol Neurosurg Psychiatry. 1996, 61(5):497‐505. 10.1136/jnnp.61.5.497

25. Lee, J.S.; Yoo, S.S.; Cho, S.Y.; Ock, S.M.; Lim, M.K.; Panych, L.P. Abnormal thalamic volume in treatment-naïve boys with Tourette syndrome. Acta Psychiatr Scand. 2006, 113(1):64‐67. doi:10.1111/j.1600-0447.2005.00666.x

26. Wang, L.; Lee, D.Y.; Bailey, E. et al. Validity of large‐deformation high dimensional brain mapping of the basal ganglia in adults with Tourette syndrome. Psychiatry Res Neuroimag. 2007, 154(2):181‐190. 10.1016/j.pscychresns.2006.08.006

27. Miller, A.M.; Bansal, R.; Hao, X. et al. Enlargement of thalamic nuclei in Tourette syndrome. Arch Gen Psychiatry. 2010, 67(9):955‐964. doi:10.1001/archgenpsychiatry.2010.102

28. Peterson, B.S.; Staib, L.; Scahill, L. et al. Regional brain and ventricular volumes in Tourette syndrome. Arch Gen Psychiatry. 2001, 58(5):427‐440. doi:10.1001/archpsyc.58.5.427

29. Peterson, B.; Leckman, J.; Scahill, L. et al. Steroid hormones and CNS sexual dimorphisms modulate symptom expression in tourette's syndrome. Psychoneuroendocrinology. 1992, 17(6):553‐563. doi:10.1016/0306-4530(92)90015-Y

30. Müller‐Vahl, K.R.; Grosskreutz, J.; Prell, T.; Kaufmann, J.; Bodammer, N.; Peschel, T. Tics are caused by alterations in prefrontal areas, thalamus and putamen, while changes in the cingulate gyrus reflect secondary compensatory mechanisms. BMC Neurosci. 2014, 15:6. doi:10.1186/1471-2202-15-6

31. Ramkiran, S.; Veselinović, T.; Dammers, J. et al. How brain networks tic: predicting tic severity through rs‐fMRI dynamics in Tourette syndrome. Hum Brain Map. 2023, 44(11): 4225‐4238. doi:10.1002/hbm.26341

32. Ganos, C.; Kühn, S.; Kahl, U. et al. Action inhibition in Tourette syndrome. Mov Disorders. 2014, 29(12):1532‐1538. doi:10.1002/mds.25944

33. Vogt, B.A. Cingulate cortex in the three limbic subsystems. Handb Clin Neurol. 2019, 166(3):39‐51. doi:10.1016/B978-0-444-64196-0.00003-0

34. O'Neill, J.; Piacentini, J.C.; Peterson, B.S. Cingulate role in Tourette syndrome. Handb Clin Neurol. 2019, 166:165‐221. doi:10.1016/B978-0-444-64196-0.00011-X

35. Dowdle, L.T.; Brown, T.R.; George, M.S.; Hanlon, C.A. Single pulse TMS to the DLPFC, compared to a matched sham control, induces a direct, causal increase in caudate, cingulate, and thalamic BOLD signal. Brain Stimul. 2018, 11(4):789‐796. doi:10.1016/j.brs.2018.02.014

36. Braun, A. The functional neuroanatomy of tourette's syndrome: an FDG-PET study. II: relationships between regional cerebral metabolism and associated behavioral and cognitive features of the illness. Neuropsychopharmacology. 1995, 13(2):151‐168. doi:10.1016/0893-133X(95)00052-F

37. Wagner, M.J.; Luo, L. Neocortex-cerebellum circuits for cognitive processing. Trends Neurosci. 2020, 43(1):42‐54. doi:10.1016/j.tins.2019.11.002

38. D'Urso, G.; Toscano, E.; Sanges, V. et al. Cerebellar transcranial direct current stimulation in children with autism spectrum disorder: a pilot study on efficacy, feasibility, safety, and unexpected outcomes in tic disorder and epilepsy. J Clin Med. 2021, 11(1):143. doi:10.3390/jcm11010143

39. Sigurdsson, H.P.; Jackson, S.R.; Jolley, L.; Mitchell, E.; Jackson, G.M. Alterations in cerebellar gray matter structure and covariance networks in young people with Tourette syndrome. Cortex. 2020, 126:1‐15. doi:10.1016/j.cortex.2019.12.022

40. Tobe, R.H.; Bansal, R.; Xu, D. et al. Cerebellar morphology in Tourette syndrome and obsessive-compulsive disorder. Ann Neurol. 2010, 67(4):479‐487. doi:10.1002/ana.21918

41. Perrotta, G. Maladaptive stress: theoretical, neurobiological and clinical profiles. Arch Depress Anxiety. 2021, 7(1):1‐7. doi:10.17352/2455-5460.000057

42. Liberati, A.S.; Perrotta, G. Neuroanatomical and functional correlates in tic disorders and Tourette's syndrome: A narrative review. Ibrain. 2024, 10(4):439-449. doi:10.1002/ibra.12177


Review

For citations:


Nurmatova  D.A., Zhukova  N.G., Sayfitdinkhuzhaev  Z.F., Okhunbaev  J.M. Morphometric Characteristics of Cerebral Structures in Gilles De La Tourette Syndrome. Personalized Psychiatry and Neurology. 2025;5(1):2-9. https://doi.org/10.52667/2712-9179-2025-5-1-2-9

Views: 154


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2712-9179 (Online)