Animal Models of Vascular Cognitive Disorder after Myocardial Infarction: Scoping Review
https://doi.org/10.52667/2712-9179-2024-4-3-24-36
Abstract
Vascular cognitive disorders (VCD) are one of the most common forms of non-psychotic mental disorders with a variable phenotype and rate of progression, transformation into vascular dementia. VCD is characterized by development against the background of existing cardiovascular diseases (CVD), which explains the importance of an interdisciplinary approach to their diagnosis and treatment. The study of new mechanisms of development of VCD can help in finding the key to the development of innovative diagnostic methods and personalized treatment approaches. The purpose of this thematic review is to search, generalize and systematize domestic and foreign research in the field of fundamental neurology using methods of modeling VCD in experimental animals. The authors conducted a search for publications in the databases PubMed, Springer, Web of Science, Clinical Keys, Scopus, Oxford Press, Cochrane, e-Library using keywords and their combinations. The publications for 2005-2024 were analyzed, including original studies of VCD and vascular dementia.
Keywords
About the Authors
A. V. PetrovRussian Federation
Artem V. Petrov
660022 Krasnoyarsk
N. A. Shnayder
Russian Federation
Natalia A. Shnayder
660022 Krasnoyarsk
192019 Saint Petersburg
M. M. Petrova
Russian Federation
Marina M. Petrova
660022 Krasnoyarsk
A. A. Evsyukov
Russian Federation
Aleksandr A. Evsyukov
660022 Krasnoyarsk
D. S. Kaskaeva
Russian Federation
Darya S. Kaskaeva
660022 Krasnoyarsk
D. V. Dmitrenko
Russian Federation
Diana V. Dmitrenko
660022 Krasnoyarsk
N. A. Malinovskaya
Russian Federation
Natalia A. Malinovskaya
660022 Krasnoyarsk
References
1. Verdelho, A.; Wardlaw, J.; Pavlovic, A.; Pantoni, L.; Godefroy, O.; Duering, M.; Charidimou, A.; Chabriat, H.; Biessels, G.J. Cognitive impairment in patients with cerebrovascular disease: A white paper from the links between stroke ESO Dementia Committee. Eur Stroke J. 2021, 6(1): 5-17. doi: 10.1177/23969873211000258
2. Kalaria, R.N. Neuropathological diagnosis of vascular cognitive impairment and vascular dementia with implications for alzheimer's disease. Acta Neuropathol. 2016, 131: 659–685. doi: 10.1007/s00401-016-1571-z
3. Gavrilova, E.S.; Yashina, L.M. Evaluation of cardiovascular risk factors and educational technologies of the correction in youth population. Siberian Medical Review. 2017, (2): 48-55. doi: 10.20333/2500136-2017-2-48-55. (In Russian)
4. Balasubramanian, P.; DelFavero, J.; Ungvari, A.; Papp, M.; Tarantini, A.; Price, N.; de Cabo, R.; Tarantini, S. Time-restricted feeding (TRF) for prevention of age-related vascular cognitive impairment and dementia. Ageing Res Rev. 2020, 64:101189. doi: 10.1016/j.arr.2020.101189
5. Wolters, F.J.; Ikram, M.A. Epidemiology of vascular dementia. Arterioscler Thromb Vasc Biol. 2019, 39:1542–1549. doi: 10.1161/ATVBAHA.119.311908
6. Ministry of Health of the Russian Federation. Clinical recommendations. Cognitive disorders in the elderly and senile. https://cr.minzdrav.gov.ru/schema/617_1 (In Russian)
7. Iadecola, C.; Duering, M.; Hachinski, V.; Joutel, A.; Pendlebury, S.T.; Schneider, J.A., Dichgans M. Vascular cognitive impairment and dementia: JACC scientific expert panel. J Am Coll Cardiol. 2019, 73(25):3326-3344. doi: 10.1016/j.jacc.2019.04.034
8. Parfenov, V.A. Diagnosis and treatment of vascular cognitive impairment, the use of citicoline: A review. Consilium Medicum. 2024, 26(2):112-116. doi: 10.26442/20751753.2024.2.202719. (In Russian)
9. Chang Wong, E.; Chang Chui, H. Vascular cognitive impairment and dementia. Continuum (Minneap Minn). 2022, 28(3): 750-780. doi:10.1212/CON.0000000000001124
10. Rundek, T.; Tolea, M.; Ariko, T.; Fagerli, E.A.; Camargo, C.J. Vascular cognitive impairment (VCI). Neurotherapeutics. 2022, 19(1):68-88. doi:10.1007/s13311-021-01170-y]
11. Yang, Y.; Kimura-Ohba, S.; Thompson, J.; Rosenberg, G.A. Rodent models of vascular cognitive impairment. Transl Stroke Res. 2016, 7(5):407-414. doi:10.1007/s12975-016-0486-2
12. Weng, Z.; Cao, C.; Stepicheva, N.A.; Chen, F.; Foley, L.M.; Cao, S.; Bhuiyan, M.I.H.; Wang, Q.; Wang, Y.; Hitchens, T. K.; Sun, D.; Cao, G.A. Novel needle mouse model of vascular cognitive impairment and dementia. The Journal of Neuroscience 2023, 43(44):7351–7360. doi: 10.1523/JNEUROSCI.0282-23.2023
13. Dorofeikova, M.V.; Petrova, N.N.; Egorov, A.Yu. Animal models of cognitive impairment in neurodegenerative and organic disorders. Russian Journal of Physiology 2020, 106(2):157–175. doi: 10.31857/S086981392002003X
14. Stewart, A.M.; Kalueff, A.V. Developing better and more valid animal models of brain disorders. Behav. Brain Res. 2015, 276:28-31. doi: 10.1016/j.bbr.2013.12.024
15. Thong, E.H.E.; Quek, E.J.W.; Loo, J.H.; Yun, C.Y.; Teo, Y.N.; Teo, Y.H.; Leow, A.S.T.; Li, T.Y.W.; Sharma, V.K.; Tan, B.Y.Q.; Yeo, L.L.L.; Chong, Y.F.; Chan, M.Y.; Sia, C.H. Acute myocardial infarction and risk of cognitive impairment and dementia: A review. Biology (Basel) 2023, 12(8):1154. doi: 10.3390/biology12081154
16. Leto, L.; Feola, M. Cognitive impairment in heart failure patients. J. Geriatr. Cardiol. 2014, 11:316–328. doi: 10.11909/j.issn.1671-5411.2014.04.007
17. Barnes, J.M.; Barnes, N.M.; Costall, B.; Horovitz, Z.P.; Ironside, J.W.; Naylor, R.J.; Williams, T.J. Angiotensin II inhibits cortical cholinergic function: Implications for cognition. J. Cardiovasc. Pharmacol. 1990, 16:234–238. doi: 10.1097/00005344-199008000-00009
18. Savaskan, E.; Hock, C.; Olivieri, G.; Bruttel, S.; Rosenberg, C.; Hulette, C.; Müller-Spahn, F. Cortical alterations of angiotensin converting enzyme, angiotensin II and AT1 receptor in Alzheimer’s dementia. Neurobiol. Aging. 2001, 22:541–546. doi: 10.1016/S0197-4580(00)00259-1
19. Tooze, J.A.; Gaussoin, S.A.; Resnick, S.M.; Fischbein, N.J.; Robinson, J.G.; Bryan, R.N.; An, Y.; Espeland, M.A. A uniform approach to modeling risk factor relationships for ischemic lesion prevalence and extent: The Women’s Health Initiative magnetic resonance imaging study. Neuroepidemiology 2010, 34:55–62. doi: 10.1159/000260071
20. Kuller, L.H.; Margolis, K.L.; Gaussoin, S.A.; Bryan, N.R.; Kerwin, D.; Limacher, M.; Wassertheil-Smoller, S.; Williamson, J.; Robinson, J.G.; Group, W.H.I.M.S.R. Relationship of hypertension, blood pressure, and blood pressure control with white matter abnormalities in the Women’s Health Initiative Memory Study (WHIMS)—MRI trial. J. Clin. Hypertens. 2010, 12: 203–212. doi: 10.1111/j.1751-7176.2009.00234.x
21. Iadecola, C. The overlap between neurodegenerative and vascular factors in the pathogenesis of dementia. Acta Neuropathol. 2010, 120:287–296. doi: 10.1007/s00401-010-0718-6
22. Lecrux, C.; Hamel, E. The neurovascular unit in brain function and disease. Acta Physiol. 2011, 203:47–59. doi: 10.1111/j.1748-1716.2011.02256.x
23. Zlokovic, B.V. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat. Rev. Neurosci. 2011, 12:723–738. doi: 10.1038/nrn3114
24. Tan, Z.S.; Beiser, A.S.; Vasan, R.S.; Roubenoff, R.; Dinarello, C.A.; Harris, T.B.; Benjamin, E.J.; Au, R.; Kiel, D.P.; Wolf, P.A. Inflammatory markers and the risk of Alzheimer disease: The Framingham Study. Neurology 2007, 68:1902–1908. doi: 10.1212/01.wnl.0000263217.36439.da
25. Tan, Z.S.; Beiser, A.S.; Fox, C.S.; Au, R.; Himali, J.J.; Debette, S.; DeCarli, C.; Vasan, R.S.; Wolf, P.A.; Seshadri, S. Association of metabolic dysregulation with volumetric brain magnetic resonance imaging and cognitive markers of subclinical brain aging in middle-aged adults: The Framingham Offspring Study. Diabetes Care 2011, 34:1766–1770. doi: 10.2337/dc11-0308
26. Sundbøll, J.; Horváth-Puhó, E.; Adelborg, K.; Schmidt, M.; Pedersen, L.; Bøtker, H.E.; Henderson, V.W.; Sørensen, H.T. Higher Risk of vascular dementia in myocardial infarction survivors. Circulation 2018, 137:567–577. doi: 10.1161/CIRCULATIONAHA.117.029127
27. Alosco, M.L.; Hayes, S.M. Structural brain alterations in heart failure: A review of the literature and implications for risk of Alzheimer’s disease. Heart Fail. Rev. 2015, 20:561–571. doi: 10.1007/s10741-015-9488-5
28. Alves, T.C.T.F.; Rays, J.; Fráguas, R.J.; Wajngarten, M.; Meneghetti, J.C.; Prando, S.; Busatto, G.F. Localized cerebral blood flow reductions in patients with heart failure: A study using 99mTc-HMPAO SPECT. J. Neuroimaging Off. J. Am. Soc. Neuroimaging. 2005, 15:150–156. doi: 10.1177/1051228404272880
29. Almeida, J.R.C.; Alves, T.C.T.F.; Wajngarten, M.; Rays, J.; Castro, C.C.; Cordeiro, Q.; Telles, R.M.S.; Fraguas, R.J.; Busatto, G.F. Late-life depression, heart failure and frontal white matter hyperintensity: A structural magnetic resonance imaging study. Braz. J. Med. Biol. Res. 2005, 38:431–436. doi: 10.1590/S0100-879X2005000300014
30. Stegmann, T.; Chu, M.L.; Witte, V.A.; Villringer, A.; Kumral, D.; Riedel-Heller, S.G.; Roehr, S.; Hagendorff, A.; Laufs, U.; Loeffler, M. Heart failure is independently associated with white matter lesions: Insights from the population-based LIFEAdult Study. ESC Heart Fail. 2021, 8:697–704. doi: 10.1002/ehf2.13166
31. Ikram, M.A.; van Oijen, M.; de Jong, F.J.; Kors, J.A., Koudstaal, P.J.; Hofman, A.; Witteman, J.C.M.; Breteler, M.M.B. Unrecognized myocardial infarction in relation to risk of dementia and cerebral small vessel disease. Stroke 2008, 39:1421–1426. doi: 10.1161/STROKEAHA.107.501106
32. Thackeray, J.T.; Hupe, H.C.; Wang, Y.; Bankstahl, J.P.; Berding, G.; Ross, T.L.; Bauersachs, J.; Wollert, K.C.; Bengel, F.M. Myocardial Inflammation Predicts Remodeling and Neuroinflammation After Myocardial Infarction. J. Am. Coll. Cardiol. 2018, 71:263–275. doi: 10.1016/j.jacc.2017.11.024
33. Goh, F.Q.; Kong, W.K.F.; Wong, R.C.C.; Chong, Y.F.; Chew, N.W.S.; Yeo, T.-C.; Sharma, V.K.; Poh, K.K.; Sia, C.-H. Cognitive Impairment in Heart Failure-A Review. Biology 2022, 11:179. doi: 10.3390/biology11020179
34. Georgiadis, D.; Sievert, M.; Cencetti, S.; Uhlmann, F.; Krivokuca, M.; Zierz, S.; Werdan, K. Cerebrovascular reactivity is impaired in patients with cardiac failure. Eur. Heart J. 2000, 21:407–413. doi: 10.1053/euhj.1999.1742
35. Gruhn, N.; Larsen, F.S.; Boesgaard, S.; Knudsen, G.M.; Mortensen, S.A.; Thomsen, G.; Aldershvile, J. Cerebral blood flow in patients with chronic heart failure before and after heart transplantation. Stroke 2001, 32:2530–2533. doi: 10.1161/hs1101.098360
36. De Jong, G.I.; Farkas, E.; Stienstra, C.M.; Plass, J.R.; Keijser, J.N.; de la Torre, J.C.; Luiten, P.G. Cerebral hypoperfusion yields capillary damage in the hippocampal CA1 area that correlates with spatial memory impairment. Neuroscience 1999, 91:203– 210. doi: 10.1016/S0306-4522(98)00659-9
37. Kure, C.E.; Rosenfeldt, F.L.; Scholey, A.B.; Pipingas, A.; Kaye, D.M.; Bergin, P.J.; Croft, K.D.; Wesnes, K.A.; Myers, S.P.; Stough, C. Relationships among cognitive function and cerebral blood flow, oxidative stress, and inflammation in older heart failure patients. J. Card. Fail. 2016, 22:548–559. doi: 10.1016/j.cardfail.2016.03.006
38. Yang, T.; Lu, Z.; Wang, L.; Zhao, Y.; Nie, B.; Xu, Q.; Han, X.; Li, T.; Zhao, J.; Cheng, W.; Wang, B.; Wu, A.; Zhu, H.; Meng, W.; Shang, H.; Zhao, M. Dynamic changes in brain glucose metabolism and neuronal structure in rats with heart failure. Neuroscience 2020, 424:34–44. doi: 10.1016/j.neuroscience.2019.10.008
39. Meissner, A.; Visanji, N.P.; Momen, M.A.; Feng, R.; Francis, B.M.; Bolz, S.; Hazrati, L. Tumor necrosis factor-α underlies loss of cortical dendritic spine density in a mouse model of congestive heart failure. J. Am. Heart Assoc. 2015, 4:e001920. doi: 10.1161/JAHA.115.001920
40. Sudduth, T.L.; Powell, D.K.; Smith, C.D.; Greenstein, A.; Wilcock, D.M. Induction of hyperhomocysteinemia models vascular dementia by induction of cerebral microhemorrhages and neuroinflammation. J. Cereb. Blood. Flow. Metab. 2013, 33(5): 708–715. doi: 10.1038/jcbfm.2013.1
41. Gooch, J.; Wilcock, D.M. Animal models of vascular cognitive impairment and dementia (VCID). Cell Mol Neurobiol. 2016, 36(2):233-239. doi: 10.1007/s10571-015-0286-3
42. Hattori, Y.; Enmi, J.; Kitamura, A.; Yamamoto, Y.; Saito, S.; Takahashi, Y. A novel mouse model of subcortical infarcts with dementia. J. Neurosci. 2015, 35(9):3915-3928. doi: 10.1523/JNEUROSCI.3970-14.2015
43. Neto, C.J.B.F.; Paganelli, R.A.; Benetoli, A.; Lima, K.C.M.; Milani, H. Permanent, 3-stage, 4-vessel occlusion as a model of chronic and progressive brain hypoperfusion in rats: a neurohistological and behavioral analysis. Behav Brain Res. 2005, 160(2):312-322. doi: 10.1016/j.bbr.2004.12.016
44. Jiwa, N.S.; Garrard, P.; Hainsworth, A.H. Experimental models of vascular dementia and vascular cognitive impairment: a systematic review. J. Neurochem. 2010, 115(4):814-828. doi: 10.1111/j.1471-4159.2010.06958.x
45. Niedowicz, D.M.; Reeves, V.L.; Platt, T.L.; Kohler, K.; Beckett, T.L.; Powell, D.K.; Lee, T.L.; Sexton, T.R.; Song, E.S.; Brewer, L.D.; Latimer, C.S.; Kraner, S.D.; Larson, K.L.; Ozcan, S.; Norris, C.M.; Hersh, L.B.; Porter, N.M.; Wilcock, D.M.; Murphy, M.P. Obesity and diabetes cause cognitive dysfunction in the absence of accelerated β-amyloid deposition in a novel murine model of mixed or vascular dementia. Acta Neuropathol Commun. 2014, 2: 64. doi: 10.1186/2051-5960-2-64
46. Cognat, E.; Cleophax, S.; Domenga-Denier, V.; Joutel, A. Early white matter changes in CADASIL: evidence of segmental intramyelinic oedema in a pre-clinical mouse model. Acta Neuropathol Commun. 2014, 2:49. doi: 10.1186/2051-5960-2-49
47. Neha; Sodhi, R.K.; Jaggi, A.S.; Singh, N. Animal models of dementia and cognitive dysfunction. Life Sci. 2014, 109(2): 73-86. doi: 10.1016/j.lfs.2014.05.017
48. Zhang, X.; Le, W. Pathological role of hypoxia in Alzheimer’s disease. Exp Neurol. 2010, 223(2):299-303. doi: 10.1016/j.expneurol.2009.07.033
49. Malick, M.; Gilbert, K.; Brouillette, J.; Godbout, R.; Rousseau, G. Cognitive deficits following a post-myocardial infarct in the rat are blocked by the serotonin-norepinephrine reuptake inhibitor desvenlafaxine. Int J Mol Sci. 2018, 19(12):3748. doi: 10.3390/ijms19123748
50. Drake, C.; Boutin, H.; Jones, M.S.; Denes, A.; McColl, B.W.; Selvarajah, J.R.; Hulme, S.; Georgiou, R.F.; Hinz, R.; Gerhard, A.; Vail, A.; Prenant, C.; Julyan, P.; Maroy, R.; Brown, G.; Smigova, A.; Herholz, K.; Kassiou, M.; Crossman, D.; Francis, S.; Proctor, S.D.; Russell, J.C.; Hopkins, S.J.; Tyrrell, P.J.; Rothwell, N.J.; Allan, S.M. Brain inflammation is induced by co-morbidities and risk factors for stroke. Brain Behav Immun. 2011, 25(6):1113-1122. doi: 10.1016/j.bbi.2011.02.008
51. Li, J.G.; Praticò, D. High levels of homocysteine results in cerebral amyloid angiopathy in mice. J Alzheimers Dis. 2015, 43(1): 29-35. doi: 10.3233/JAD-141101
52. Sudduth, T.L.; Weekman, E.M.; Brothers, H.M.; Braun, K.; Wilcock, D.M. β-amyloid deposition is shifted to the vasculature and memory impairment is exacerbated when hyperhomocysteinemia is induced in APP/PS1 transgenic mice. Alzheimers Res Ther. 2014, 6(3):32. doi: 10.1186/alzrt262
53. Sebastian, M.J.; Khan, S.K.; Pappachan, J.M.; Jeeyavudeen, M.S. Diabetes and cognitive function: An evidence-based current perspective. World J Diabetes 2023, 14(2):92-109. doi: 10.4239/wjd.v14.i2.92.
54. Saedi, E.; Gheini, M.R.; Faiz, F.; Arami, M.A. Diabetes mellitus and cognitive impairments. World J Diabetes 2016, 7(17):412- 422. doi: 10.4239/wjd.v7.i17.412
55. Martinez, J.L.Jr.; Jensen, R.A.; Vasquez, B.J.; Lacob, J.S.; McGaugh, J.L.; Purdy, R.E. Acquisition deficits induced by sodium nitrite in rats and mice. Psychopharmacology (Berl). 1979, 60(3):221–228. doi:10.1007/bf00426659
56. Hansson, G.K.; Hermansson, A. The immune system in atherosclerosis. Nat Immunol. 2011, 12(3):204-212. doi: 10.1038/ni.2001
57. Daugherty, A. Mouse models of atherosclerosis. Am J Med Sci. 2002, 323:3–10. doi: 10.1097/00000441-200201000-00002
58. Getz, G.S.; Reardon, C.A. Diet and murine atherosclerosis. Arterioscler Thromb Vasc Biol. 2006, 26(2):242-249. doi: 10.1161/01.ATV.0000201071.49029.17
Review
For citations:
Petrov A.V., Shnayder N.A., Petrova M.M., Evsyukov A.A., Kaskaeva D.S., Dmitrenko D.V., Malinovskaya N.A. Animal Models of Vascular Cognitive Disorder after Myocardial Infarction: Scoping Review. Personalized Psychiatry and Neurology. 2024;4(3):24-36. https://doi.org/10.52667/2712-9179-2024-4-3-24-36