Preview

Personalized Psychiatry and Neurology

Advanced search

Neuroprotective Activity of GLP-1 Analogues: General Understanding of Implementation Mechanisms

https://doi.org/10.52667/2712-9179-2024-4-2-11

Abstract

 Glucagon-like peptide-1 (GLP-1) is a hormone possessing extensive pharmacologic potential. Additionally, to its multiple metabolic effects, GLP-1 also exhibits cardiac and neuroprotective effects. Native GLP-1 is not used as a medicinal agent, however, now GLP-1 analogues structurally similar to it and having a long-lasting effect have been developed and used in the treatment of type 2 diabetes mellitus (T2DM). The review focuses on the neuroprotective effect of these drugs and discusses possible mechanisms of this effect. Aim: To identify information about experimental and clinical evidence about the role of GLP-1 analogues in brain protection in neurodegenerative dis[1]eases. Materials and Methods: The review was performed in accordance with the PRISMA 2020 statement; publications were searched for in the PubMed, MedLine, Web of Science, Scopus, and Google Scholar databases covering the period from 2014 to 2024. Results: The publications provide strong evidence of the association between T2DM and cognitive impairment, as well as information on the effectiveness of GLP-1 analogues in the management of neurodegenerative diseases. Possible mechanisms are discussed. Conclusion: This review shows that GLP-1 can prevent cognitive and motor disorders. There is sufficient experimental evidence of the neurotropic activity of the drugs, and clinical trials are ongoing.

About the Authors

E. L. Golovina
Siberian State Medical University
Russian Federation

Eugenija L. Golovina

 634050 Tomsk

Tel.: +7-913-801-08-06



O. E. Vaizova
Siberian State Medical University
Russian Federation

Olga E. Vaizova 

634050 Tomsk



J. G. Samojlova
Siberian State Medical University
Russian Federation

Julija G. Samojlova

634050 Tomsk



References

1. Müller, T.D.; Finan, B.; Bloom, S.R.; D'Alessio, D.; Drucker, D.J.; Flatt, P.R.; Fritsche, A.; Gribble, F.; Grill, H.J.; Habener, J.F. Glucagon-like peptide 1 (GLP-1). Mol Metab. 2019, 30:72-130. doi: 10.1016/j.molmet.2019.09.010.

2. Campbell, J.E.; Müller, T.D.; Finan, B.; DiMarchi, R.D.; Tschöp, M.H.; D'Alessio, D.A. GIPR/GLP-1R dual agonist therapies for diabetes and weight loss-chemistry, physiology, and clinical applications. Cell Metab. 2023, 35(9):1519-1529. doi: 10.1016/j.cmet.2023.07.010.

3. Wei, Y.; Mojsov, S. Tissue-specific expression of the human receptor for glucagon-like peptide-I: brain, heart and pancreatic forms have the same deduced amino acid sequences. FEBS Lett. 1995, 358(3):219-24. doi: 10.1016/0014-5793(94)01430-9.

4. Holz, G.G. New insights concerning the glucose-dependent insulin secretagogue action of glucagon-like peptide-1 in pancreatic beta-cells. Horm Metab Res. 2004, 36(11-12):787-94. doi: 10.1055/s-2004-826165.

5. Laurindo, L.F.; Barbalho, S.M.; Guiguer, E.L.; da Silva Soares de Souza, M.; de Souza, G.A.; Fidalgo, T.M.; Araújo, A.C.; de Souza Gonzaga, H.F.; de Bortoli Teixeira, D.; de Oliveira Silva Ullmann, T. GLP-1a: Going beyond traditional use. Int J Mol Sci. 2022, 23(2):739. doi: 10.3390/ijms23020739.

6. Abdulhameed, N.; Babin, A.; Hansen, K.; Weaver, R.; Banks, W.A.; Talbot, K.; Rhea, E.M. Comparing regional brain uptake of incretin receptor agonists after intranasal delivery in CD-1 mice and the APP/PS1 mouse model of Alzheimer's disease. Alzheimers Res Ther. 2024, 16(1):173. doi: 10.1186/s13195-024-01537-1.

7. Mehdi, S.F.; Pusapati, S.; Anwar, M.S.; Lohana, D.; Kumar, P.; Nandula, S.A.; Nawaz, F.K.; Tracey, K.; Yang, H.; LeRoith, D.; Glucagon-like peptide-1: a multi-faceted anti-inflammatory agent. Front Immunol. 2023, 14:1148209. doi: 10.3389/fimmu.2023.1148209.

8. Boshchenko, A.A.; Maslov, L.N.; Mukhomedzyanov, A.V.; Zhuravleva, O.A.; Slidnevskaya, A.S.; Naryzhnaya, N.V.; Zinovieva, A.S.; Ilinykh, P.A. Peptides are cardioprotective drugs of the future: the receptor and signaling mechanisms of the cardioprotective effect of glucagon-like peptide-1 receptor agonists. Int J Mol Sci. 2024, 25(9):4900. doi: 10.3390/ijms25094900.

9. Li, X.; Song, D.; Leng, S.X. Link between type 2 diabetes and Alzheimer's disease: from epidemiology to mechanism and treatment. Clin Interv Aging. 2015, 10:549-60. doi: 10.2147/CIA.S74042.

10. Gudala, K.; Bansal, D.; Schifano, F.; Bhansali, A. Diabetes mellitus and risk of dementia: A meta-analysis of prospective observational studies. J Diabetes Investig. 2013, 4(6):640-50. doi: 10.1111/jdi.12087.

11. Zheng, M.; Wang, P. Role of insulin receptor substance-1 modulating PI3K/Akt insulin signaling pathway in Alzheimer's disease. 3 Biotech. 2021, 11(4):179. doi: 10.1007/s13205-021-02738-3.

12. An, Y.; Varma, V.R.; Varma, S.; Casanova, R.; Dammer, E.; Pletnikova, O.; Chia, C.W.; Egan, J.M.; Ferrucci, L.; Troncoso, J.; Evidence for brain glucose dysregulation in Alzheimer's disease. Alzheimers Dement. 2018, 14(3):318-329. doi: 10.1016/j.jalz.2017.09.011.

13. Yang, Y.W.; Hsieh, T.F.; Li, C.I.; Liu, C.S.; Lin, W.Y.; Chiang, J.H.; Li, T.C.; Lin, C.C. Increased risk of Parkinson disease with diabetes mellitus in a population-based study. Medicine (Baltimore) 2017, 96(3):e5921. doi: 10.1097/MD.0000000000005921.

14. Xu, Q.; Park, Y.; Huang, X.; Hollenbeck, A.; Blair, A.; Schatzkin, A.; Chen, H. Diabetes and risk of Parkinson's disease. Diabetes Care 2011, 34(4):910-5. doi: 10.2337/dc10-1922.

15. Sathananthan, A.; Man, C.D.; Micheletto, F.; Zinsmeister, A.R.; Camilleri, M.; Giesler, P.D.; Laugen, J.M.; Toffolo, G.; Rizza, R.A.; Cobelli, C. Common genetic variation in GLP1R and insulin secretion in response to exogenous GLP-1 in nondiabetic subjects: a pilot study. Diabetes Care 2010, 33(9):2074-6. doi: 10.2337/dc10-0200.

16. Qiu, X.; Huang, Y.; Cen, L.; Chen, X.; Lu, T.; Shen, Y.; Xu, P.; Wang, J.; Xiao, Y. Association of GLP-1 receptor gene polymorphisms with sporadic Parkinson's disease in Chinese Han population. Neurosci Lett. 2020, 728:135004. doi: 10.1016/j.neulet.2020.135004.

17. Cornell, S. A review of GLP-1 receptor agonists in type 2 diabetes: A focus on the mechanism of action of once-weekly agents. J Clin Pharm Ther. 2020, 45 (1):17-27. doi: 10.1111/jcpt.13230.

18. Morieri, M.L.; Avogaro, A.; Fadini, G.P. Long-acting injectable GLP-1 receptor agonists for the treatment of adults with type 2 diabetes: perspectives from clinical practice. diabetes Metab Syndr Obes. 2020, 13:4221-4234. doi: 10.2147/DMSO.S216054.

19. Göke, R.; Larsen, P.J.; Mikkelsen, J.D.; Sheikh, S.P. Distribution of GLP-1 binding sites in the rat brain: evidence that exendin4 is a ligand of brain GLP-1 binding sites. Eur J Neurosci. 1995, 7(11):2294-300. doi: 10.1111/j.1460-9568.1995.tb00650.x.

20. Secher, A.; Jelsing, J.; Baquero, A.F.; Hecksher-Sørensen, J.; Cowley, M.A.; Dalbøge, L.S.; Hansen, G.; Grove, K.L.; Pyke, C.; Raun, K. The arcuate nucleus mediates GLP-1 receptor agonist liraglutide-dependent weight loss. J Clin Invest. 2014, 124(10):4473-88. doi: 10.1172/JCI75276.

21. Zheng, J.; Xie,Y.; Ren, L.; Qi, L.; Wu, L.; Pan, X.; Zhou, J.; Chen, Z.; Liu, L. GLP-1 improves the supportive ability of astrocytes to neurons by promoting aerobic glycolysis in Alzheimer's disease. Mol Metab. 2021, 47:101180. doi: 10.1016/j.molmet.2021.101180.

22. Carranza-Naval, M.J.; Del Marco, A.; Hierro-Bujalance, C.; Alves-Martinez, P.; Infante-Garcia, C.; Vargas-Soria, M.; Herrera, M.; Barba-Cordoba, B.; Atienza-Navarro, I.; Lubian-Lopez, S. Liraglutide reduces vascular damage, neuronal loss, and cognitive impairment in a mixed murine model of Alzheimer's disease and type 2 diabetes. Front Aging Neurosci. 2021, 13:741923. doi: 10.3389/fnagi.2021.741923.

23. Xie, Y.; Zheng, J.; Li, S.; Li, H.; Zhou, Y.; Zheng, W.; Zhang, M.; Liu, L.; Chen, Z. GLP-1 improves the neuronal supportive ability of astrocytes in Alzheimer's disease by regulating mitochondrial dysfunction via the cAMP/PKA pathway. Biochem Pharmacol. 2021, 188:114578. doi: 10.1016/j.bcp.2021.114578.

24. Duarte, A.I.; Candeias, E.; Alves, I.N.; Mena, D.; Silva, D.F.; Machado, N.J.; Campos, E.J.; Santos, M.S.; Oliveira, C.R.; Moreira, P.I. Liraglutide protects against brain amyloid-β1-42 accumulation in female mice with early Alzheimer's disease-like pathology by partially rescuing oxidative/nitrosative stress and inflammation. Int J Mol Sci. 2020, 21(5):1746. doi: 10.3390/ijms21051746.

25. Mehla, J.; Pahuja, M.; Gupta, Y.K. Streptozotocin-induced sporadic Alzheimer's disease: selection of appropriate dose. J Alzheimers Dis. 2013, 33(1):17-21. doi: 10.3233/JAD-2012-120958.

26. Paladugu, L.; Gharaibeh, A.; Kolli, N.; Learman, C.; Hall, T.C.; Li, L.; Rossignol, J.; Maiti, P.; Dunbar, G.L. Liraglutide has anti-inflammatory and anti-amyloid properties in streptozotocin-induced and 5xFAD mouse models of Alzheimer's disease. Int J Mol Sci. 2021, 22(2):860. doi: 10.3390/ijms22020860

27. Batista, A.F.; Forny-Germano, L.; Clarke, J.R.; Lyra, E.; Silva, N.M.; Brito-Moreira, J.; Boehnke, S.E.; Winterborn, A.; Coe, B.C.; Lablans, A.; Vital, J.F.; The diabetes drug liraglutide reverses cognitive impairment in mice and attenuates insulin receptor and synaptic pathology in a non-human primate model of Alzheimer's disease. J Pathol. 2018, 245(1):85-100. doi: 10.1002/path.5056

28. Jantrapirom, S.; Nimlamool, W.; Chattipakorn, N.; Chattipakorn, S.; Temviriyanukul, P.; Inthachat, W.; Govitrapong, P.; Potikanond, S. Liraglutide suppresses tau hyperphosphorylation, amyloid beta accumulation through regulating neuronal insulin signaling and BACE-1 activity. Int J Mol Sci. 2020, 21(5):1725. doi: 10.3390/ijms21051725.

29. Vassar, R. BACE1: the beta-secretase enzyme in Alzheimer's disease. J Mol Neurosci. 2004, 23(1-2):105-14. doi: 10.1385/JMN:23:1-2:105.

30. Bomba, M.; Granzotto, A.; Castelli, V.; Onofrj, M.; Lattanzio, R.; Cimini, A.; Sensi, S.L. Exenatide reverts the high-fat-dietinduced impairment of BDNF signaling and inflammatory response in an animal model of Alzheimer's disease. J Alzheimers Dis. 2019, 70(3):793-810. doi: 10.3233/JAD-190237.

31. Bomba, M.; Granzotto, A.; Castelli, V.; Massetti, N.; Silvestri, E.; Canzoniero, L.M.T.; Cimini, A.; Sensi, S.L. Exenatide exerts cognitive effects by modulating the BDNF-TrkB neurotrophic axis in adult mice. Neurobiol Aging. 2018, 64:33-43. doi: 10.1016/j.neurobiolaging.2017.12.009.

32. An, J.; Zhou, Y.; Zhang, M.; Xie, Y.; Ke, S.; Liu, L.; Pan, X.; Chen, Z. Exenatide alleviates mitochondrial dysfunction and cognitive impairment in the 5×FAD mouse model of Alzheimer's disease. Behav Brain Res. 2019, 370:111932. doi: 10.1016/j.bbr.2019.111932.

33. Craft, S.; Asthana, S.; Cook, D.G.; Baker, L.D.; Cherrier, M.; Purganan, K.; Wait, C.; Petrova, A.; Latendresse, S.; Watson, G.S.; Insulin dose-response effects on memory and plasma amyloid precursor protein in Alzheimer's disease: interactions with apolipoprotein E genotype. Psychoneuroendocrinology 2003, 28(6):809-22. doi: 10.1016/s0306-4530(02)00087-2.

34. Robinson, A.; Lubitz, I.; Atrakchi-Baranes, D.; Licht-Murava, A.; Katsel, P.; Leroith, D.; Liraz-Zaltsman, S.; Haroutunian, V.; Beeri, M.S. Combination of insulin with a GLP1 agonist is associated with better memory and normal expression of insulin receptor pathway genes in a mouse model of Alzheimer's disease. J Mol Neurosci. 2019, 67(4):504-510. doi: 10.1007/s12031-019-1257-9.

35. Elbassuoni, E.A.; Ahmed, R.F. Mechanism of the neuroprotective effect of GLP-1 in a rat model of Parkinson's with preexisting diabetes. Neurochem Int. 2019, 131:104583. doi: 10.1016/j.neuint.2019.

36. Liu, W.; Li, Y.; Jalewa, J.; Saunders-Wood, T.; Li, L.; Hölscher, C. Neuroprotective effects of an oxyntomodulin analogue in the MPTP mouse model of Parkinson's disease. Eur J Pharmacol. 2015, 765:284-90. doi: 10.1016/j.ejphar.2015.08.038.

37. Lin, T.K.; Lin, KJ.; Lin, H.Y.; Lin, K.L.; Lan, M.Y.; Wang, P.W.; Wang, T.J.; Wang, F.S.; Tsai, P.C.; Liou, C.W. Glucagon-like peptide-1 receptor agonist ameliorates 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxicity through enhancing mitophagy flux and reducing α-synuclein and oxidative stress. Front Mol Neurosci. 2021, 14:697440. doi: 10.3389/fnmol.2021.697440.

38. Wu, P.; Dong, Y.; Chen, J.; Guan, T.; Cao, B.; Zhang, Y.; Qi, Y.; Guan, Z.; Wang, Y. Liraglutide regulates mitochondrial quality control system through PGC-1α in a mouse model of Parkinson's disease. Neurotox Res. 2022, 40(1):286-297. doi: 10.1007/s12640-021-00460-9

39. Zhang, L.; Zhang, L.; Li, L.; Hölscher, C. Neuroprotective effects of the novel GLP-1 long acting analogue semaglutide in the MPTP Parkinson's disease mouse model. Neuropeptides 2018, 71:70-80. doi: 10.1016/j.npep.2018.07.003.

40. Zhang, L.; Zhang, L.; Li, L.; Hölscher, C. Semaglutide is neuroprotective and reduces α-synuclein levels in the chronic MPTP mouse model of Parkinson's disease. J Parkinsons Dis. 2019, 9(1):157-171. doi: 10.3233/JPD-181503.

41. Thirugnanam, T.; Santhakumar, K. Chemically induced models of Parkinson's disease. Comp Biochem Physiol C Toxicol Pharmacol. 2022, 252:109213. doi: 10.1016/j.cbpc.2021.109213.

42. Aksoy, D.; Solmaz, V.; Çavuşoğlu, T.; Meral, A.; Ateş, U.; Erbaş, O. Neuroprotective effects of exenatide in a rotenoneinduced rat model of Parkinson's disease. Am J Med Sci. 2017, 354(3):319-324. doi: 10.1016/j.amjms.2017.05.002.

43. Khalaf, M.M.; El-Sayed, M.M.; Kandeil, M.A.; Ahmed, S. A novel protective modality against rotenone-induced Parkinson's disease: A pre-clinical study with dulaglutide. Int Immunopharmacol. 2023, 119:110170. doi: 10.1016/j.intimp.2023.110170.

44. Yang, G.; Li, J.; Cai, Y.; Yang, Z.; Li, R.; Fu, W. Glycyrrhizic acid alleviates 6-hydroxydopamine and corticosterone-induced neurotoxicity in SH-SY5Y cells through modulating autophagy. Neurochem Res. 2018, 43(10):1914-1926. doi: 10.1007/s11064-018- 2609-5.

45. Liu, D.X.; Zhao, C.S.; Wei, X.N.; Ma, Y.P.; Wu, J.K. Semaglutide protects against 6-OHDA toxicity by enhancing autophagy and inhibiting oxidative stress. Parkinsons Dis. 2022, 2022:6813017. doi: 10.1155/2022/6813017.

46. Hölscher, C. Novel dual GLP-1/GIP receptor agonists show neuroprotective effects in Alzheimer's and Parkinson's disease models. Neuropharmacology 2018, 136(Pt B):251-259. doi: 10.1016/j.neuropharm.2018.01.040.

47. Feng, P.; Zhang, X.; Li, D.; Ji, C.; Yuan, Z.; Wang, R.; Xue, G.; Li, G.; Hölscher, C. Two novel dual GLP-1/GIP receptor agonists are neuroprotective in the MPTP mouse model of Parkinson's disease. Neuropharmacology 2018, 133:385-394. doi: 10.1016/j.neuropharm.2018.02.012.

48. Salles, G.N.; Calió, M.L.; Hölscher, C.; Pacheco-Soares, C.; Porcionatto, M.; Lobo, A.O. Neuroprotective and restorative properties of the GLP-1/GIP dual agonist DA-JC1 compared with a GLP-1 single agonist in Alzheimer's disease. Neuropharmacology 2020, 162:107813. doi: 10.1016/j.neuropharm.2019.107813.

49. Vadini, F.; Simeone, P.G.; Boccatonda, A.; Guagnano, M.T.; Liani, R.; Tripaldi, R.; Di Castelnuovo, A.; Cipollone, F.; Consoli, A.; Santilli, F. Liraglutide improves memory in obese patients with prediabetes or early type 2 diabetes: a randomized, controlled study. Int J Obes (Lond). 2020, 44(6):1254-1263. doi: 10.1038/s41366-020-0535-5.

50. Mullins, R.J.; Mustapic, M.; Chia, C.W.; Carlson, O.; Gulyani, S.; Tran, J.; Li, Y.; Mattson, M.P.; Resnick, S.; Egan, J.M. A pilot study of exenatide actions in Alzheimer's disease. Curr Alzheimer Res. 2019, 16(8):741-752. doi: 10.2174/1567205016666190913155950.

51. Gejl, M.; Gjedde, A.; Egefjord, L.; Møller, A.; Hansen, S.B.; Vang, K.; Rodell, A.; Brændgaard, H.; Gottrup, H.; Schacht, A. In Alzheimer's disease, 6-month treatment with GLP-1 analog prevents decline of brain glucose metabolism: randomized, placebocontrolled, double-blind clinical trial. Front Aging Neurosci. 2016, 8:108. doi: 10.3389/fnagi.2016.00108.

52. Femminella, G.D.; Frangou, E.; Love, S.B.; Busza, G.; Holmes, C.; Ritchie, C.; Lawrence, R.; McFarlane, B.; Tadros, G.; Ridha, B.H. Evaluating the effects of the novel GLP-1 analogue liraglutide in Alzheimer's disease: study protocol for a randomised controlled trial (ELAD study). Trials 2019, 20(1):191. doi: 10.1186/s13063-019-3259-x.

53. Athauda, D.; Maclagan, K.; Skene, S.S.; Bajwa-Joseph, M.; Letchford, D.; Chowdhury, K.; Hibbert, S.; Budnik, N.; Zampedri, L.; Dickson, J. Exenatide once weekly versus placebo in Parkinson's disease: a randomised, double-blind, placebo-controlled trial. Lancet 2017, 390(10103):1664-1675. doi: 10.1016/S0140-6736(17)31585-4.

54. Athauda, D.; Gulyani, S.; Karnati, H.K.; Li, Y.; Tweedie, D.; Mustapic, M.; Chawla, S.; Chowdhury, K.; Skene, S.S.; Greig, N.H. Utility of neuronal-derived exosomes to examine molecular mechanisms that affect motor function in patients with Parkinson disease: a secondary analysis of the exenatide-PD trial. JAMA Neurol. 2019, 76(4):420-429. doi: 10.1001/jamaneurol.2018.4304ю

55. Meissner, W.G.; Remy, P.; Giordana, C.; Maltête, D.; Derkinderen, P.; Houéto, J.L.; Anheim, M.; Benatru, I.; Boraud, T.; Brefel-Courbon, C. Trial of lixisenatide in early Parkinson's disease. N Engl J Med. 2024, 390(13):1176-1185. doi: 10.1056/NEJMoa2312323.

56. Kluger, A.Y.; McCullough, P.A. Semaglutide and GLP-1 analogues as weight-loss agents. Lancet 2018, 392(10148):615-616. doi: 10.1016/S0140-6736(18)31826-9.

57. Yaribeygi, H.; Rashidy-Pour, A.; Atkin, S.L.; Jamialahmadi, T.; Sahebkar, A. GLP-1 mimetics and cognition. Life Sci. 2021, 264:118645. doi: 10.1016/j.lfs.2020.118645


Review

For citations:


Golovina E.L., Vaizova O.E., Samojlova J.G. Neuroprotective Activity of GLP-1 Analogues: General Understanding of Implementation Mechanisms. Personalized Psychiatry and Neurology. 2024;4(3):2-11. https://doi.org/10.52667/2712-9179-2024-4-2-11

Views: 384


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2712-9179 (Online)