

Personalized Psychiatry and Neurology

Review

The Role of MicroRNAs as Crucial Regulators of Sleep /Wakefulness in Neurological and Mental Disorders (Systematic Review)

Kamila Seitkazina

Mariinsky Hospital, 191014 St. Petersburg, Russia

* Correspondence: kamilaserikovna@yandex.ru

Abstract: Sleep quality disorders in patients with neurological diseases are a common comorbid pathology that leads to mutual aggravation syndromes, accelerating the progression and severity of neurological conditions. Sleep problems speed up the progression of neurological diseases. In turn, these diseases further reduce sleep quality, this creates a "vicious cycle". The prediction and early diagnosis of sleep quality disorders in patients with neurological profiles require the development of new sensitive and specific biomarkers. Among them, microRNA patterns are the most promising. This report will present the results of preclinical and clinical studies on changes in microRNA expression and their association with sleep quality disorders in experimental animals and humans with various neurological diseases and mental disorders. Additionally, a new personalized approach to assessing the risk of sleep quality disorders in patients with neurological and psychiatric profiles will be presented. This approach evaluates the risk of sleep disorders (low, medium, or high) based on the most thoroughly studied microRNA patterns.

Keywords: sleep disorder, neurodegenerative disease, mental disorder, epigenetic biomarker, microRNA.

Citation: Seitkazina, K. The Role of MicroRNAs as Crucial Regulators of Sleep /Wakefulness in Neurological and Mental Disorders (Systematic Review). *Personalized Psychiatry and Neurology* 2025, 5 (4): 3-15. https://doi.org/10.52667/2712-9179-2025-5-4-3-15

Chief Editor: Nikolaj G. Neznanov, D Med Sci. Professor

Received: 17 November 2025 Accepted: 12 December 2025 Published: 15 December 2025

Publisher's Note: V.M. Bekhterev NMRC PN stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2025 by the authors.

1. INTRODUCTION

Sleep disorders are a group of conditions characterized by disruption of the normal circadian rhythm, which negatively impacts psychological well-being and physical health [1]. The International Classification of Sleep Disorders (ICSD), third edition, includes: insomnias; sleep-disordered breathing; central hypersomnia; circadian rhythm sleep-wake disorders; parasomnias; sleep movement disorders; sleep disorder, unspecified; and somatic and neurological disorders associated with sleep [2].

Modifiable and non-modifiable risk factors for sleep disturbances (insomnia) are identified (Table 1) [3].

Non-modifiable risk factors include genetic factors, including polymorphisms in circadian rhythm genes; genes associated with insomnia, bipolar disorder, schizophrenia, etc. Modifiable risk factors, in addition to environmental factors (insolation, noise, xenobiotics), also include the nature of a person's work activity [4]. In recent years, epigenetic risk factors have been studied, among which small non-coding ribonucleic acids (microRNAs or miRs) are of the greatest interest [5].

MicroRNAs are a group of non-coding RNAs, 18–25 nucleotides in length, that regulate gene expression at the post-transcriptional level. The diversity of their mechanisms of action and the complexity of their interaction networks can regulate various biological processes, such as cell division, cell differentiation, apoptosis, angiogenesis, and oncogenesis [6]. MicroRNAs can also influence the development of sleep disorders [7]. Dysregulation of microRNA synthesis causes cellular inflammation and stress, and conversely, increased stress causes dysregulation of microRNA synthesis, creating a vicious cycle leading to nerve cell apoptosis and neurodegeneration in people with sleep disturbances [8].

Table 1. Modifiable and non-modifiable factors of sleep quality disturbances.

Modifiable factors	Non-modifiable factors
Poor sleep hygiene	Sex
Sun exposure	Age
Nature of work (night shift work, flexible work	Polymorphisms of genes controlling the circa-
schedules, business trips with time zone	dian rhythm of sleep and wakefulness (CLOCK,
changes)	PER 3, PPARGC1A, etc.)
Caffeine and caffeinated beverage abuse	Polymorphisms of genes associated with insom-
Alcohol abuse	nia, bipolar disorder, and schizophrenia (ROR1,
Abuse of psychostimulants prescribed for me-	PLCB1, etc.)
dicinal purposes	Polymorphisms of genes associated with restless
Use of other psychostimulants of organic and	legs syndrome (MEIS1, etc.)
synthetic origin (mushrooms, amphetamines)	Polymorphisms of genes associated with ob-
Dietary habits (spicy foods containing capsaicin)	structive sleep apnea (PHOX2B, etc.)
Internet addiction	
Noise pollution	
Epigenetic factors (circulating microRNAs)	

Late identification and untimely correction of modifiable risk factors for sleep quality disorders can lead to the development and progression of chronic insomnia and comorbid neurodegenerative diseases (e.g., Parkinson's disease, Alzheimer's disease, multiple sclerosis, etc.); cardiovascular diseases (hypertension, chronic heart failure, etc.), mental disorders (BD, depression, schizophrenia), endocrine diseases (type 2 diabetes mellitus, metabolic syndrome) [9] [10].

The aim of this review is to summarize and systematize the results of preclinical and clinical studies of the role of microRNAs as epigenetic biomarkers of the development and progression of pathological conditions that play a key role in sleep quality disorders and comorbid neurological diseases and mental disorders.

2. MATERIALS AND METHODS

Russian-language and English-language publications were analyzed in the Google Scholar PubMed, OxfordPress, Clinical Keys, Scopus, and e-Library databases. Inclusion criteria: full-text versions in Russian or English, publication type (original article, systematic review, meta-analysis, Cochrane review). The search was conducted using the following keywords and phrases: sleep quality, epigenetic factors of sleep disorders, chronic insomnia, and microRNA. Publications published from 2018 to 2024 were analyzed, including original preclinical studies on experimental animal models, clinical trials involving patients with sleep disorders and neurological diseases. This review was prepared taking into account the international PRISMA 2020 (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines (Figure 1). A total of 124 publications were analyzed, from which duplicate publications and publications with negative results were excluded. A total of 27 publications meeting the objectives and search criteria were included in this review. MicroRNA studies were conducted using samples from brain, blood (plasma, serum), hematopoietic stem cells, and the immortalized HELA cell line. MicroRNAs were identified as epigenetic biomarkers of sleep disturbances, neurodegenerative diseases, and new therapeutic strategies for sleep disturbances in neurodegenerative diseases.

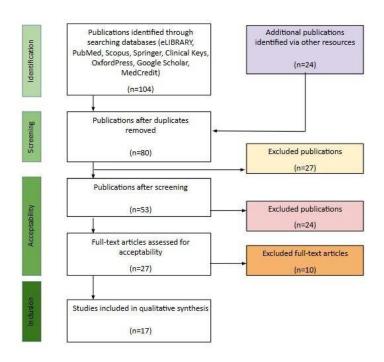


Figure 1. PRISMA 2020 flow diagram of the study selection process.

3. RESULTS

3.1 Preclinical studies

This review analyzed 17 publications on experimental studies performed on various animal models: drosophila [11], zebrafish [12], mice [11], [13], [14], rats [15], [16], [17], [11], sheep [18], and pigs [19]. Brain neurons from experimental animals [19], [20], [16], [17], [5], [12], [11], [18], spinal ganglia neurons [15], and embryonic fibroblast cells [14] were used as tissue samples in which the expression levels of microRNAs associated with sleep quality and circadian rhythm disorders were studied. Seven clinical studies of microRNAs were also analyzed using blood samples (serum, plasma) [15], [21], [22], saliva [5], hematopoietic stem cells (HSCs) [11], as well as three studies performed using HELA cell lines (an "immortal" cell line created specifically for scientific research) [5], [18], [23].

Melatonin (MT) is a pleiotropic regulatory hormone synthesized in the pineal gland at night, modulating ineffective sleep, disrupted circadian rhythms, and immune imbalance. MT is a potent antioxidant, acting on mitochondria, and has anti-inflammatory and pluripotent anticancer properties [26].

Qiu J. et al. (2019) demonstrated that miR-7 overexpression in the porcine pineal gland suppresses MT synthesis and secretion in vitro and in vivo experiments [19]. Overexpression of miR-7 inhibits the expression of AANAAT (arylalkylamine N-acetyltransferase, a pineal gland enzyme that regulates MT synthesis) and blood MT levels [27].

Rolls et al. (2024), studying mouse HSCs, found that sleep deprivation downregulated miR-19b expression, a negative regulator of suppressor of cytokine signaling (SOCS) genes that inhibit HSC migration and homing. Accordingly, HSCs from sleep-deprived mice exhibited higher levels of SOCS gene expression, lower migratory capacity in vitro, and reduced bone marrow homing capacity in vivo. Restoration of sleep after sleep deprivation restored HSC potential to normal. This study provides insight into the cellular and molecular mechanisms underlying the effects of sleep deprivation on HSCs and highlights the potentially important role of donor sleep in the success of HSC transplantation in the treatment of neurodegenerative diseases [11].

 $\label{lem:conditional} \textbf{Table 2.} \ \text{Preclinical studies of the role of microRNAs in sleep disorders.}$

MicroRNA	Study design	Tissue	Pathological mechanism of sleep disorder	Reference
miR-7	Experimental study	Pineal gland tissue	Overexpression of miR-7 in-	[19]
	(pigs)	(pinocytes)	hibits the production of AA-	[-]
	4 0 /	u ,	NAAT, a key enzyme in-	
			volved in melatonin synthe-	
			sis	
miR-19b	Experimental study	Hematopoietic stem cells	Overexpression of miR-19b	[11]
	(rats)		is associated with reduced	
			sleep duration	
miR-19b	Experimental study	Lumbar ganglion cells (neu-	Overexpression of miR-19b	[15]
	(rats)	rons).	is associated with circadian	
			rhythm disturbances in pa-	
		Blood	tients with widespread pain	
		(plasma)	syndrome and post-trau-	
			matic stress disorder	
miR-25-3p	Experimental study	Saliva	Overexpression of miR-25-	[13]
	(male mice)		3p is associated with im-	
			paired sleep quality in rest-	
			less legs syndrome	
miR-30c-5p	Experimental study	Saliva	Overexpression of miR-30c-	[13]
	(male mice)		5p is associated with de-	
			layed sleep phase syndrome	
			(presomnia)	
miR-124	Experimental study	Neurons	Hypo-expression of miR-124	[20]
	(drosophila with re-		is associated with sleep	
	combinant alleles		quality disturbances due to	
	UAS-DsRed-mir-124)		abnormal motor activity in	
			Drosophila, leading to loss	
			of sensitivity to the morn-	
			ing/evening cycle	
miR-124	Experimental study	Neurons	Hypo-expression of miR-124	[17]
miR-182	(rats)	(medial temporal lobe)	and miR-182	
			is associated with decreased	
			sleep duration, sleep disor-	
			ders, and cognitive impair-	
			ment (memory decline)	
miR-125a	Experimental study	Neurons	Hypo-expression of miR	[16]
	(rats)		125a is associated with a de-	
			crease in the duration of	

		(medial temporal lobe, hypo-	NREM sleep during the	
		thalamus, prefrontal, occipi-	light phase, an increase in	
		tal, and somatosensory cor-	NREM sleep during the	
		tex)	dark phase, and a decrease	
			in the duration of sleep dur-	
			ing the light phase	
miR 132	Experimental study	Neurons	Hypo-expression of miR-132	[17]
	(rats)	(medial temporal lobe)	is associated with reduced	
			REM-sleep duration and im-	
			paired memory consolida-	
			tion in the hippocampus.	
miR-132	Experimental study	Neurons	Hypo-expression of miR-132	[5]
	(rats)	(medial temporal lobe, pre-	in the prefrontal and soma-	
		frontal, and somatosensory	tosensory cortex is associ-	
		cortex)	ated with reduced sleep du-	
			ration	
			Overexpression of miR-132	
			in the hippocampus is asso-	
			ciated with reduced sleep	
			duration	
miR-137,	Experimental study	Brain tissue	Hypo-expression of miR-	[12]
miR-637,	(zebrafish)	(hypothalamus, pineal gland)	137, miR-637, miR-654-5p	
miR-654-5p,			and miR-665 results in in-	
miR -665			creased hypocretin synthe-	
			sis, increased wakefulness	
			and decreased sleep dura-	
			tion	
miR-138	Experimental study	Neurons	Hypo-expression of miR-138	[11]
	(rats)	(hippocampus, hypothala-	in the hypothalamus, pre-	
		mus, prefrontal cortex, occipi-	frontal, occipital, and soma-	
		tal cortex, and somatosensory	tosensory cortex and overex-	
		cortex)	pression in the hippocam-	
			pus are associated with re-	
			duced sleep duration and	
			shortened NREM sleep	
miR -142-3p	Experimental study	Neurons	Overexpression of miR-142-	[24]
	(rats)	(suprachiasmatic nucleus of	3p is associated with im-	-
		the hypothalamus and im-	paired sleep quality and in-	
		mortalized cell lines obtained	hibition of the expression of	
			-	
		after knocking down the	circadian genes <i>clock</i> and	

miR-146	Experimental study	Saliva	Overexpression of miR 146	[25]
	(mice)		is associated with impaired	
			sleep quality	
miR-199a-5p	Experimental study	Embryonic fibroblast cells.	Overexpression of miR-	[14]
miR-449a	(wild-type mice and	Neurons	199a-5p and miR-449a is as-	
	mice with a modified	(suprachiasmatic nuclei of the	sociated with impaired qual-	
	clock gene)	hypothalamus)	ity of life due to the inhibi-	
			tion of the circadian rhythm	
			gene per2	
miR-263a,	Experimental study	Neurons	Overexpression of miR-	[11]
miR-984	(drosophila)	(brain)	263a, miR-984, and miR-986	
miR-986			is associated with reduced	
			daytime and nighttime sleep	
miR-483	Experimental study	Neurons	Overexpression of miR-483	[18]
	(rats, rams)	(pineal gland pinocytes, ol-	is associated with impaired	
		factory tract region, retina)	sleep quality due to the inhi-	
			bition of AANAAT, a key	
			enzyme involved in the syn-	
			thesis of melatonin	

Linnstaedt S. D. et al. (2020) found that miR-19b may be a key regulator of circadian transcripts CLOCK and $ROR\alpha$ (genes that control the circadian rhythm of sleep and wakefulness), and that miR-19b overexpression may play an important role in the development of sleep quality disturbances in the context of post-traumatic widespread pain and post-traumatic stress disorder (PTSD) [15]. Hypo-expression of miR-19b was found in patients with idiopathic REM (rapid eye movement) sleep disorder several years before the primary diagnosis of Parkinson's disease or LBD [5].

Yoshida Y. et al. (2023), studying the levels of microRNA expression in the saliva of male mice, also identified an association of miR-30c-5p overexpression with delayed sleep syndrome (presomnia) [25]. The association of miR-124 expression levels and sleep deprivation was studied by Ma Q. et al. (2020) in a study of Drosophila brain neurons with recombinant *UAS-DsRed-mir-124* alleles. It was found that abnormal motor activity in drosophila is associated with miR-124 hypoexpression and leads to a loss of sensitivity to the morning/evening cycle in drosophila [20].

Lyons, L.C. et al. (2023) demonstrated an association between miR-125 hypo-expression and impaired sleep quality. Intraventricular administration of a miR-125a inhibitor resulted in a decrease in NREM-sleep duration during the light phase, an increase in NREM-sleep during the dark phase, and a reduction in sleep duration during the light phase [16].

Meister B. et al. (cited in [28]) demonstrated that intraventricular injection of premiR-132 reduced the duration of NREM and REM sleep in mice.

Davis C.J. et al. (2020) reported that sleep deprivation in rats affects miR-132 expression in a region-specific manner, which in turn increases in the hippocampus but decreases in neurons of the somatosensory and prefrontal cortex after sleep deprivation. It was shown that REM sleep deprivation for a period of 3 to 6 hours impairs memory consolidation, while REM sleep deprivation for a period of 0 to 3 hours had no effect on sleep quality [5]. The association of miR-137, miR-637, miR-654-5p, and miR-665 expression

with hypocretin synthesis and sleep duration impairment was demonstrated by Holm A. et al. (2022). The authors found that hypo-expression of these microRNAs leads to increased hypocretin synthesis, increased wakefulness, and decreased sleep duration in zebrafish [12].

A systematic review by Ahangarpour A. et al. (2024), which analyzed 20 studies published between 1998 and 2021, convincingly demonstrated that miR-138 hypo-expression reduces both sleep duration and NREM sleep in rats subjected to sleep deprivation [11]. Chinnapaiyan S. et al. (2020), studying the expression levels of miR-142-3p in the suprachiasmatic nucleus of the hypothalamus of rats (immortalized cell lines obtained after knocking in the mPerLuc1 gene), found that miR-142-3p overexpression is associated with impaired sleep quality and inhibition of the expression of the circadian genes *clock* and *bmall* [24].

The association of miR-199a-5p and miR-449a with the expression level of the *per2* gene was studied by Wang Y. et al. (2018) in fibroblast cells and neurons of the suprachiasmatic nucleus of the hypothalamus in wild-type mice and mice with a modified clock gene. It is known that CLOCK/ARNTL1 heterodimers can bind to the E-box in the regulatory sequence and activate miR-449a expression. MiR-449a, which acts as a negative regulator of the *per2* gene, affects its 3'-untranslated region. Per2 expression levels are reduced by overexpression of miR-199a-5p and miR-449a. Conversely, PER2 protein levels are increased by inhibition of miR-449a using microRNA antagonists [14].

Yoshida Y. et al. (2023) reported that miR-146 overexpression is associated with reduced sleep duration in mice with restless legs syndrome [25].

Tamplin O. J. et al. (cited in [11]) found that overexpression of miR-263a, miR-984, and miR-986 in Drosophila is associated with reduced sleep duration. The authors also showed that overexpression of the studied microRNAs is associated with both nocturnal and daytime sleep disorders.

An association between miR-483 and sleep impairment was demonstrated in an experimental study by Kim J. Y. et al. (2023). The authors attributed this phenomenon to overexpression of miR-483 and its indirect inhibition of the key enzyme AANAAT, involved in MT synthesis [18].

3.2. Clinical studies

Linnstaedt S. D. et al. (2020) demonstrated that miR-19b overexpression in African Americans aged 18 to 65 years is associated with circadian rhythm disturbances in the setting of widespread pain syndrome and PTSD [15]. Sagir F. et al. (2021), studying microRNA levels in the peripheral blood of patients with multiple sclerosis, showed a negative correlation between BDNF (brain-derived neurotrophic factor) levels and miR-19b expression levels in peripheral blood [33].

Hicks S. D. et al. (2018), studying the expression levels of miR-24-3p, miR-26a-5p, miR-200b-3p, and miR-203a-3p, demonstrated an association between overexpression of the studied microRNAs and increased sleep latency in 140 children (aged 2 to 6 years) with autism spectrum disorder (ASD) and associated sleep quality impairments (n = 63) [29].

Liang Y. et al. (2021) in their systematic review of studies of microRNA levels as prognostic biomarkers in Alzheimer's disease found an association between miR-29 (miR-29a, miR-29b, and miR-29c) hypo-expression and the regulation of APP (beta-amyloid precursor protein) and BACE (β -secretase) and impaired sleep quality in patients with AD. The authors attributed this to increased β -cleavage of endogenous APP-like protein (APPL) by β -secretase (dBACE), which disrupts the circadian sleep-wake cycle [30].

Weigend S. et al. (2019) found that miR-30c overexpression was associated with sleep deficit in young adults (mean age 24 ± 3 years), while restorative sleep reduced the expression of the studied microRNAs [22].

Table 3. Clinical studies of the role of microRNAs as epigenetic markers of sleep disorders.

MicroRNA	Study	Tissue	Pathological mechanism of	Reference
	design		sleep disorder	
miR-19b	Case-control	Blood	Overexpression of miR-19b, by alter-	[15]
	(patients with widespread	(plasma)	ing transcript levels of key circadian	
	pain syndrome and PTSD)		genes, is associated with circadian	
			rhythm disturbances in the back-	
			ground of widespread pain syndrome	
			and PTSD	
miR-19b	Case-control study	Blood	Hypo-expression of miR-19b was as-	[21]
	(patients with isolated	(serum)	sociated with isolated REM-sleep be-	
	REM-sleep behavior disor-		havioral impairment	
	der associated with DaT-			
	positive dopaminergic def-			
	icit, PD, DLB, and healthy			
	controls)			
miR-24-3p	Case-control	Saliva	Overexpression of miR-24-3p, miR-	[5]
miR-26a-5p	(children with ASD and		26a-5p, miR-200b-3p, and miR-203a-	[29]
miR-200b-3p	healthy controls)		3p was associated with increased	
miR-203a-3p			sleep latency (difficulty falling asleep)	
miR-29	Case-control	Neurons	Hypo-expression of miR-29 paralogs	[30]
miR-29a, miR-	(AD patients)	(anterior temporal	(miR-29a, miR-29b, and miR-29c) was	
29b, miR-29c)		lobe, cerebellum)	associated with impaired sleep qual-	
			ity in patients with AD	
miR-30c	Case-control	Blood	Overexpression of miR-30c was asso-	[22]
	(healthy individuals with	(serum)	ciated with reduced sleep duration	
	and without sleep depriva-		and impaired sleep quality	
	tion)			
miR-125a	Case-control	Blood	Hypo-expression of miR-125a, miR-	[31]
miR-126	(patients with short sleep	(plasma)	126, and miR-146 is associated with	
miR-146	duration and healthy indi-		impaired sleep quality and chronic	
	viduals)		shortening of sleep duration	
miR-619-5p	Case-control study	Blood	Hypo-expression of miR-619-5p and	[32]
miR-4433b-3p	(patients with sleep disor-	(serum)	miR-4433b-3p was associated with	
	ders and healthy controls)		impaired sleep quality	

Note: AANAAT - arylalkylamine-N-acetyltransferase, miR - microRNA, AD - Alzheimer's disease, BR - bipolar disorder, HSC - hematopoietic stem cell, DLB - dementia with Lewy bodies, MT - melatonin, NREMS - slow wave sleep, REM - rapid eye movement sleep, HCRT - hypocretin (orexin), PTSD - post-traumatic stress disorder, OSA - obstructive sleep apnea syndrome, ASD - autism spectrum disorder.

Table 4. Clinical studies of the role of microRNAs as epigenetic markers of sleep disorders using cell lines.

MicroRNA	Study design	Tissue	MicroRNA expression	Reference
			level	
miR-181	Clinical study	Stromal cells	Overexpression of miR-	[23]
	(children with ASD)	(adipose tissue)	181 is associated with	
		immortalized stromal	impaired sleep quality	
		cells (bone marrow)	in patients with ASD	
premiR-182	Case-control study	HeLa cells.	Overexpression of	[5]
	(patients with major	Blood	premieR-183 is associ-	
	depressive disorder	(plasma)	ated with sleep quality	
	and chronic insomnia		impairment due to cir-	
	and healthy volun-		cadian rhythm disrup-	
	teers)		tion	
miR-219	Case-control (twins	Lymphoblasts	Overexpression of miR-	[18]
	with ASD)	(bone marrow cell line)	219 is associated with	
			sleep quality impair-	
			ment in ASD	

Note: ASD – autism spectrum disorder.

Hijmans J.G. et al. (2019) demonstrated that hypo-expression of miR-125a, miR-126, and miR-146 was associated with sleep quality impairment and chronically reduced sleep duration in middle-aged patients (mean age 55 ± 3 years) sleeping less than 7 hours per night [31].

Baek S.J. et al. (2021), studying the role of epigenetic prognostic biomarkers of sleep deficit, found that miR-619-5p and miR-4433b-3p hypo-expression was associated with reduced nocturnal sleep duration and impaired sleep quality [32].

Knarr M. et al. (2019) demonstrated that miR-181 overexpression is associated with impaired sleep quality in patients with ASD due to increased circadian expression of the PER3 protein (a protein expressed by the Per gene, which controls circadian rhythms of sleep and wakefulness), and is also associated with increased adipogenesis [23].

Kinoshita C. et al. demonstrated in their systematic review that premiR-182 overexpression is associated with impaired sleep quality due to abnormal circadian rhythms in patients with depression and chronic insomnia. (2020) [5], analyzing 89 publications from 2007 to 2019.

A recent systematic review by Kim et al. (2023), based on an analysis of 62 studies from 2008 to 2022, found that miR 219 overexpression is associated with impaired sleep quality in twins with ASD [18].

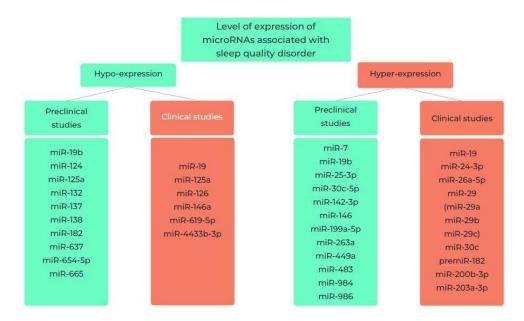


Figure 2. Patterns and levels of microRNAs associated with impaired sleep quality.

Figure 3. Risks of developing sleep quality disorders based on the studied microRNA patterns.

4. DISCUSSION

The systematic review of the role of microRNAs as epigenetic biomarkers of sleep impairment, based on the analyzed and summarized results of 17 experimental studies, 7 clinical trials, and 3 studies conducted using cell lines, demonstrated that the most promising epigenetic biomarkers are miR-19b and miR 146, the role of which has been studied in both preclinical [21], [25] and clinical studies [15], [31]. However, the association of miR-19b and miR 146 expression levels with sleep impairment is contradictory. Thus, in some studies, hypo-expression of miR-19b and miR 146 was associated with sleep impairment, while in others, overexpression of these microRNAs negatively impacted sleep quality. This phenomenon can be explained by a compensatory increase in microRNA expression at the onset of sleep impairment, as well as by different microRNA concentrations depending on the tissue studied. Another well-studied microRNA is miR-125a. The results

of studies on the role of this microRNA are more consistent and indicate that hypo-xpression of miR-125a is associated with impaired sleep quality [31], [16].

MiR-30c is also a potential epigenetic biomarker for impaired sleep quality, as over-expression of this microRNA has been associated with impaired sleep quality and demonstrated in both preclinical [25] and clinical studies [22], but sample sizes were small, and the studies conducted so far are isolated.

Overall, our systematic review allowed us to group previously studied epigenetic biomarkers of impaired sleep quality based on the degree of risk for developing this pathological condition, including low risk, intermediate risk, and high risk (Figure 3). On the other hand, we understand that translation of the obtained results requires additional clinical bridge studies to assess the sensitivity and specificity of the most studied microRNAs associated with sleep quality disorders in the most common neurological diseases and mental disorders.

5. CONCLUSION

MicroRNAs are stable epigenetic biomarkers that can regulate various biological processes, particularly influencing the development and progression of sleep disturbances in neurodegenerative diseases and psychiatric disorders. Growing evidence suggests that sleep disturbances and comorbid conditions alter the levels of certain microRNAs that regulate circadian rhythms of sleep and wakefulness. This systematic review demonstrates the role of microRNAs as epigenetic biomarkers of sleep disturbances in the progression and severity of neurological diseases and psychiatric disorders. These results suggest that clinically significant changes in the expression pattern of microRNAs in patients with sleep disturbances may serve as biomarkers for the development of comorbid neurodegenerative diseases and psychiatric disorders. Furthermore, the regulation of microRNA expression may serve as a potential therapeutic tool for sleep-related disorders in neurological practice. To improve the sensitivity and specificity of blood microRNAs as epigenetic biomarkers of sleep disorders, bridging studies are needed to replicate the results of preclinical and clinical studies obtained worldwide into real-world clinical practice.

Funding: Not applicable.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

REFERENCES:

- Pavlova, M.K.; Latreille, V. Sleep disorders. The American Journal of Medicine. 2019; 132(3):292-299. https://doi.org/10.1016/j.amjmed.2018.09.021.
- 2. Gauld, C.; Lopez, R.; Morin, C. Symptom network analysis of the sleep disorders diagnostic criteria based on the clinical text of the ICSD-3. *Journal of Sleep Research.* **2022**; 31(1):e13435. https://doi.org/10.1111/jsr.13435.
- 3. Perez, M.N.; Salas, R.M.E. Insomnia. *CONTINUUM: Lifelong Learning in Neurology*. **2020**; 26(4):1003-1015. https://doi.org/10.1212/CON.000000000000879.
- 4. Karnaukhov, V.E.; Narodova, E.A.; Shnayder, N.A. Role of essential amino acid tryptophan in causing sleep disorders and anxiety-depressive disorders. *Humans and Their Health*. **2022**; 25(2):13-23. https://doi.org/10.21626/vestnik/2022-2/02.
- 5. Kinoshita, C.; Okamoto, Y.; Aoyama, K.; Nakaki, T. MicroRNA: a key player for the interplay of circadian rhythm abnormalities, sleep disorders and neurodegenerative diseases. *Clocks & Sleep.* **2020**; 2(3):282-307. https://doi.org/10.3390/clockssleep2030022.

- 6. Nguyen, T.P.N.; Kumar, M.; Fedele? E. MicroRNA alteration, application as biomarkers, and therapeutic approaches in neurodegenerative diseases. *International Journal of Molecular Sciences*. **2022**; 23(9):4718. https://doi.org/10.3390/ijms23094718.
- 7. Khalyfa, A; Sanz-Rubio, D. Genetics and extracellular vesicles of pediatrics sleep disordered breathing and epilepsy. *International Journal of Molecular Sciences*. **2019**; 20(21):5483. https://doi.org/10.3390/ijms20215483.
- 8. Konovalova, J.; Gerasymchuk, D.; Parkkinen, I. Interplay between microRNAs and oxidative stress in neurodegenerative diseases. *International Journal of Molecular Sciences*. **2019**; 20(23):6055. https://doi.org/10.3390/ijms20236055.
- 9. Gulia, K.K.; Kumar, V.M. Sleep disorders in the elderly: a growing challenge. *Psychogeriatrics*. **2018**; 18(3):155-165. https://doi.org/10.1111/psyg.12319.
- 10. Zou, H.; Zhou, H.; Yan, R. Chronotype, circadian rhythm, and psychiatric disorders: Recent evidence and potential mechanisms. *Frontiers in Neuroscience*. **2022**; 16:811771. https://doi.org/10.3389/fnins.2022.811771.
- 11. Ahangarpour, A.; Belali, R. Role of MicroRNAs in the Regulation of Sleep/wakefulness and Their Expression Changes in the Brain Following Sleep Deprivation. *Jundishapur Journal of Physiology*. **2024**; 2(2):e148771. https://doi.org/10.3295/JJP.2023.2.2.121.
- 12. Holm, A.; Possovre, M.-L.; Bandarabadi, M. The evolutionarily conserved miRNA-137 targets the neuropeptide hypocretin/orexin and modulates the wake to sleep ratio. *Proceedings of the National Academy of Sciences of the United States of America*. **2022**; 119(17):e2112225119. https://doi.org/10.1073/pnas.2112225119.
- 13. Yoshida, Y.; Yajima, Y.; Fujikura, Y. Identification of salivary microRNA profiles in male mouse model of chronic sleep disorder. *Stress.* **2023**; 26(1):21-28. https://doi.org/10.1080/10253890.2022.2156783.
- 14. Wang, Y.; Lv K.; Chen H.; et al. Functional annotation of extensively and divergently expressed miRNAs in suprachiasmatic nucleus of Clock Δ19 mutant mice. *Bioscience Reports*. **2018**; 38(6): BSR20180233. https://doi.org/10.1042/BSR20180233.
- 15. Linnstaedt, S.D.; Lv, K.; Chen, H. MicroRNA-19b predicts widespread pain and posttraumatic stress symptom risk in a sex-dependent manner following trauma exposure. *Pain.* **2020**. 161(1):47-60. https://doi.org/10.1097/j.pain.0000000000001709.
- 16. Lyons, L.C.; Vanrobaeys, Y.; Abel, T. Sleep and memory: The impact of sleep deprivation on transcription, translational control, and protein synthesis in the brain. *Journal of Neurochemistry*. **2023**; 166(1):24-46. https://doi.org/10.1111/jnc.15787.
- 17. Karabulut, S.; Bayramov, K.; Bayramov, R. Effects of post-learning REM sleep deprivation on hippocampal plasticity-related genes and microRNA in mice. *Behavioural Brain Research*. **2019**; 361:7-13. https://doi.org/10.1016/j.bbr.2018.12.045.
- 18. Kim, J.Y.; Kim, W.; Lee, K.-H. The role of microRNAs in the molecular link between circadian rhythm and autism spectrum disorder. *Animal Cells and Systems*. **2023**; 27(1):38-52. https://doi.org/10.1080/19768354.2023.2180535.
- 19. Qiu, J.; Zhang, J.; Zhou, Y. MicroRNA-7 inhibits melatonin synthesis by acting as a linking molecule between leptin and norepinephrine signaling pathways in pig pineal gland. *Journal of Pineal Research.* **2019**; 66(3):e12552. https://doi.org/10.1111/jpi.12552.
- 20. Ma, Q.; Mo, G.; Tan, Y. MicroRNAs and the biological clock: a target for diseases associated with a loss of circadian regulation. *African Health Sciences*. **2020**; 20(4):1887-1894. https://doi.org/10.4314/ahs.v20i4.46.
- 21. Soto, M.; Iranzo, A.; Lahoz, S. Serum microRNAs predict isolated rapid eye movement sleep behavior disorder and Lewy body diseases. *Movement Disorders*. **2022**; 37(10):2086-2098. https://doi.org/10.1002/mds.29171.
- 22. Weigend, S.; Holst, S.C.; Meier, J. Prolonged waking and recovery sleep affect the serum microRNA expression profile in humans. *Clocks & Sleep.* **2018**; 1(1):75-86. https://doi.org/10.3390/clockssleep1010008.
- 23. Knarr, M.; Nagaraj, A.B.; Kwiatkowski, L.J.; DiFeo, A. miR-181a modulates circadian rhythm in immortalized bone marrow and adipose derived stromal cells and promotes differentiation through the regulation of PER3. *Scientific Reports*. **2019**; 9(1):307. https://doi.org/10.1038/s41598-018-36425-w.
- 24. Chinnapaiyan, S.; Dutta, R.K.; Devadoss, D. Role of Non-Coding RNAs in Lung Circadian Clock Related Diseases. *International Journal of Molecular Sciences*. **2020**; 21(8):3013. DOI: 10.3390/ijms21083013.

- 25. Yoshida, Y.; Yajima, Y.; Fujikura, Y. Identification of salivary microRNA profiles in male mouse model of chronic sleep disorder. *Stress.* **2023**; 26(1):21-28. https://doi.org/10.1080/10253890.2022.2156783.
- 26. Alamdari, A.F.; Rahnemayan, S.; Rajabi, H. Melatonin as a promising modulator of aging related neurodegenerative disorders: Role of microRNAs. *Pharmacological Research.* **2021**; 173:105839. https://doi.org/10.1016/j.phrs.2021.105839.
- 27. Moskaleva, P.V.; Shnayder, N.A.; Nasyrova, R.F. Association of polymorphic variants of DDC (AADC), AANAT and ASMT genes encoding enzymes for melatonin synthesis with the higher risk of neuropsychiatric disorders. *Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova*. **2021**; 121(5):151. https://doi.org/10.17116/jnevro2021121041151.
- 28. Mustafin, R.N.; Khusnutdinova, E.K. Epigenetic hypothesis of the role of peptides in aging. *Advances in Gerontology*. **2018**; 31(1):10-20.
- 29. Hicks, S.D.; Khurana, N.; Williams, J. Diurnal oscillations in human salivary microRNA and microbial transcription: Implications for human health and disease. *PLOS ONE*. **2018**; 13(7):e0198288. https://doi.org/10.1371/journal.pone.0198288.
- 30. Liang, Y.; Wang, L. Inflamma-microRNAs in Alzheimer's disease: From disease pathogenesis to therapeutic potentials. *Frontiers in Cellular Neuroscience*. **2021**; 15:785433. https://doi.org/10.3389/fncel.2021.785433.
- 31. Hijmans, J.G.; Levy, M.; Garcia, V. Insufficient sleep is associated with a pro-atherogenic circulating microRNA signature. *Experimental Physiology.* **2019**; 104(6):975-982. https://doi.org/10.1113/EP087469.
- 32. Baek, S.-J.; Ban, H.-J.; Park, S.-M. Circulating microRNAs as potential diagnostic biomarkers for poor sleep quality. *Nature and Science of Sleep.* **2021**; 13:1001-1012. https://doi.org/10.2147/NSS.S311541.
- 33. Sağır, F.; Ersoy Tunalı, Tombul, T. MiR-132-3p, miR-106b-5p, and miR-19b-3p are associated with brain-derived neurotrophic factor production and clinical activity in multiple sclerosis: A pilot study. *Genetic Testing and Molecular Biomarkers*. **2021**; 25(11):720-726. https://doi.org/10.1089/gtmb.2021.0183.